Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12532, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822007

ABSTRACT

This paper aims to estimate the permeability of concrete by replacing the laboratory tests with robust machine learning (ML)-based models. For this purpose, the potential of twelve well-known ML techniques was investigated in estimating the water penetration depth (WPD) of nano natural pozzolana (NNP)-reinforced concrete based on 840 data points. The preparation of concrete specimens was based on the different combinations of NNP content, water-to-cement (W/C) ratio, median particle size (MPS) of NNP, and curing time (CT). Comparing the results estimated by the ML models with the laboratory results revealed that the hist-gradient boosting regressor (HGBR) and K-nearest neighbors (KNN) algorithms were the most and least robust models to estimate the WPD of NNP-reinforced concrete, respectively. Both laboratory and ML results showed that the WPD of NNP-reinforced concrete decreased with the increase of the NNP content from 1 to 4%, the decrease of the W/C ratio and the MPS, and the increase of the CT. To further aid in the estimation of concrete's WPD for engineering challenges, a graphical user interface for the ML-based models was developed. Proposing such a model may be effectively employed in the management of concrete quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...