Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Genome Res ; 26(1): 130-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26560630

ABSTRACT

We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.


Subject(s)
Chromosomes, Mammalian/genetics , Evolution, Molecular , Swine/genetics , X Chromosome/genetics , Y Chromosome/genetics , Animals , Base Sequence , Cats/genetics , Dogs/genetics , Female , Gene Conversion , Gene Expression , Gene Library , Gene Order , Humans , Male , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA
2.
PLoS One ; 8(4): e60482, 2013.
Article in English | MEDLINE | ID: mdl-23596509

ABSTRACT

Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype--phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439.


Subject(s)
Chromosomes, Human , Down Syndrome/genetics , High-Throughput Nucleotide Sequencing , Animals , Chromosomes, Human/radiation effects , Chromosomes, Human, Pair 21 , Comparative Genomic Hybridization , Disease Models, Animal , Gamma Rays/adverse effects , Gene Dosage , Humans , In Situ Hybridization, Fluorescence , Male , Mice , Oligonucleotide Array Sequence Analysis , Recombination, Genetic , Trisomy
3.
Infect Immun ; 81(3): 838-49, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23275093

ABSTRACT

Avian pathogenic Escherichia coli (APEC) causes respiratory and systemic disease in poultry. Sequencing of a multilocus sequence type 95 (ST95) serogroup O1 strain previously indicated that APEC resembles E. coli causing extraintestinal human diseases. We sequenced the genomes of two strains of another dominant APEC lineage (ST23 serogroup O78 strains χ7122 and IMT2125) and compared them to each other and to the reannotated APEC O1 sequence. For comparison, we also sequenced a human enterotoxigenic E. coli (ETEC) strain of the same ST23 serogroup O78 lineage. Phylogenetic analysis indicated that the APEC O78 strains were more closely related to human ST23 ETEC than to APEC O1, indicating that separation of pathotypes on the basis of their extraintestinal or diarrheagenic nature is not supported by their phylogeny. The accessory genome of APEC ST23 strains exhibited limited conservation of APEC O1 genomic islands and a distinct repertoire of virulence-associated loci. In light of this diversity, we surveyed the phenotype of 2,185 signature-tagged transposon mutants of χ7122 following intra-air sac inoculation of turkeys. This procedure identified novel APEC ST23 genes that play strain- and tissue-specific roles during infection. For example, genes mediating group 4 capsule synthesis were required for the virulence of χ7122 and were conserved in IMT2125 but absent from APEC O1. Our data reveal the genetic diversity of E. coli strains adapted to cause the same avian disease and indicate that the core genome of the ST23 lineage serves as a chassis for the evolution of E. coli strains adapted to cause avian or human disease via acquisition of distinct virulence genes.


Subject(s)
Biological Evolution , Escherichia coli/classification , Escherichia coli/genetics , Genome, Bacterial/genetics , Poultry Diseases/microbiology , Turkeys , Animals , DNA, Bacterial/genetics , Escherichia coli/pathogenicity , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Gene Expression Regulation, Bacterial , Lactoferrin/deficiency , Leukocyte Disorders , Molecular Sequence Annotation , Molecular Sequence Data , Mutation , Phylogeny , Virulence
4.
Vet Microbiol ; 159(1-2): 195-203, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22541164

ABSTRACT

Contagious equine metritis (CEM) is an important venereal disease of horses that is of concern to the thoroughbred industry. Taylorella equigenitalis is a causative agent of CEM but very little is known about it or its close relative Taylorella asinigenitalis. To reveal novel information about Taylorella biology, comparative genomic analyses were undertaken. Whole genome sequencing was performed for the T. equigenitalis type strain, NCTC11184. Draft genome sequences were produced for a second T. equigenitalis strain and for a strain of T. asinigenitalis. These genome sequences were analysed and compared to each other and the recently released genome sequence of T. equigenitalis MCE9. These analyses revealed that T. equigenitalis strains appear to be very similar to each other with relatively little strain-specific DNA content. A number of genes were identified that encode putative toxins and adhesins that are possibly involved in infection. Analysis of T. asinigenitalis revealed that it has a very similar gene repertoire to that of T. equigenitalis but shares surprisingly little DNA sequence identity with it. The generation of genome sequence information greatly increases knowledge of these poorly characterised bacteria and greatly facilitates study of them.


Subject(s)
Bacterial Proteins/genetics , Genome, Bacterial/genetics , Taylorella/genetics , Adhesins, Bacterial/genetics , Fimbriae Proteins/genetics , Genetic Variation , Sequence Homology, Nucleic Acid , Taylorella/classification , Taylorella/metabolism
5.
Proc Natl Acad Sci U S A ; 109(9): 3416-21, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22331916

ABSTRACT

Antigenic variation enables pathogens to avoid the host immune response by continual switching of surface proteins. The protozoan blood parasite Trypanosoma brucei causes human African trypanosomiasis ("sleeping sickness") across sub-Saharan Africa and is a model system for antigenic variation, surviving by periodically replacing a monolayer of variant surface glycoproteins (VSG) that covers its cell surface. We compared the genome of Trypanosoma brucei with two closely related parasites Trypanosoma congolense and Trypanosoma vivax, to reveal how the variant antigen repertoire has evolved and how it might affect contemporary antigenic diversity. We reconstruct VSG diversification showing that Trypanosoma congolense uses variant antigens derived from multiple ancestral VSG lineages, whereas in Trypanosoma brucei VSG have recent origins, and ancestral gene lineages have been repeatedly co-opted to novel functions. These historical differences are reflected in fundamental differences between species in the scale and mechanism of recombination. Using phylogenetic incompatibility as a metric for genetic exchange, we show that the frequency of recombination is comparable between Trypanosoma congolense and Trypanosoma brucei but is much lower in Trypanosoma vivax. Furthermore, in showing that the C-terminal domain of Trypanosoma brucei VSG plays a crucial role in facilitating exchange, we reveal substantial species differences in the mechanism of VSG diversification. Our results demonstrate how past VSG evolution indirectly determines the ability of contemporary parasites to generate novel variant antigens through recombination and suggest that the current model for antigenic variation in Trypanosoma brucei is only one means by which these parasites maintain chronic infections.


Subject(s)
Antigenic Variation/genetics , Evolution, Molecular , Genome, Protozoan , Immune Evasion/genetics , Trypanosoma brucei brucei/immunology , Trypanosoma congolense/immunology , Trypanosoma vivax/immunology , Variant Surface Glycoproteins, Trypanosoma/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA, Protozoan/genetics , Humans , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Conformation , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombination, Genetic , Sequence Alignment , Sequence Homology, Amino Acid , Species Specificity , Trypanosoma brucei brucei/genetics , Trypanosoma congolense/genetics , Trypanosoma vivax/genetics , Variant Surface Glycoproteins, Trypanosoma/chemistry , Variant Surface Glycoproteins, Trypanosoma/immunology
6.
PLoS One ; 7(1): e29481, 2012.
Article in English | MEDLINE | ID: mdl-22238616

ABSTRACT

Extra-intestinal pathogenic E. coli (ExPEC), including avian pathogenic E. coli (APEC), pose a considerable threat to both human and animal health, with illness causing substantial economic loss. APEC strain χ7122 (O78∶K80∶H9), containing three large plasmids [pChi7122-1 (IncFIB/FIIA-FIC), pChi7122-2 (IncFII), and pChi7122-3 (IncI(2))]; and a small plasmid pChi7122-4 (ColE2-like), has been used for many years as a model strain to study the molecular mechanisms of ExPEC pathogenicity and zoonotic potential. We previously sequenced and characterized the plasmid pChi7122-1 and determined its importance in systemic APEC infection; however the roles of the other pChi7122 plasmids were still ambiguous. Herein we present the sequence of the remaining pChi7122 plasmids, confirming that pChi7122-2 and pChi7122-3 encode an ABC iron transport system (eitABCD) and a putative type IV fimbriae respectively, whereas pChi7122-4 is a cryptic plasmid. New features were also identified, including a gene cluster on pChi7122-2 that is not present in other E. coli strains but is found in Salmonella serovars and is predicted to encode the sugars catabolic pathways. In vitro evaluation of the APEC χ7122 derivative strains with the three large plasmids, either individually or in combinations, provided new insights into the role of plasmids in biofilm formation, bile and acid tolerance, and the interaction of E. coli strains with 3-D cultures of intestinal epithelial cells. In this study, we show that the nature and combinations of plasmids, as well as the background of the host strains, have an effect on these phenomena. Our data reveal new insights into the role of extra-chromosomal sequences in fitness and diversity of ExPEC in their phenotypes.


Subject(s)
Birds/microbiology , Escherichia coli/genetics , Genetic Fitness/genetics , Plasmids/genetics , Animals , Antigenic Variation/genetics , Base Sequence , Birds/genetics , Chickens/genetics , Chickens/microbiology , DNA, Bacterial/genetics , Escherichia coli/pathogenicity , Escherichia coli Infections/genetics , Escherichia coli Infections/veterinary , Immune Evasion/genetics , Models, Biological , Models, Molecular , Molecular Sequence Data , Plasmids/analysis , Poultry Diseases/genetics , Poultry Diseases/microbiology , Virulence Factors/chemistry , Virulence Factors/genetics
7.
Emerg Infect Dis ; 17(4): 645-52, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21470454

ABSTRACT

Antimicrobial drug resistance is a global challenge for the 21st century with the emergence of resistant bacterial strains worldwide. Transferable resistance to ß-lactam antimicrobial drugs, mediated by production of extended-spectrum ß-lactamases (ESBLs), is of particular concern. In 2004, an ESBL-carrying IncK plasmid (pCT) was isolated from cattle in the United Kingdom. The sequence was a 93,629-bp plasmid encoding a single antimicrobial drug resistance gene, blaCTX-M-14. From this information, PCRs identifying novel features of pCT were designed and applied to isolates from several countries, showing that the plasmid has disseminated worldwide in bacteria from humans and animals. Complete DNA sequences can be used as a platform to develop rapid epidemiologic tools to identify and trace the spread of plasmids in clinically relevant pathogens, thus facilitating a better understanding of their distribution and ability to transfer between bacteria of humans and animals.


Subject(s)
Escherichia coli/enzymology , Escherichia coli/genetics , Molecular Epidemiology , Plasmids/genetics , beta-Lactamases/genetics , Animals , Cattle , Escherichia coli/classification , Gene Order , Humans , Molecular Sequence Data , Phylogeny , United Kingdom/epidemiology
8.
PLoS One ; 4(7): e6072, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19603075

ABSTRACT

BACKGROUND: Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: The sequencing of whole genomes of S. suis isolates provides opportunities to investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for which genome sequences are currently available. Accordingly, approximately 40% of the approximately 2 Mb genome is unique in comparison to other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation; virtually all of the genome is common to the S. suis strains. The only exceptions are three approximately 90 kb regions, present in the two isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in putative virulence and colonization factors. CONCLUSIONS/SIGNIFICANCE: The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has contributed to the evolution of drug resistance.


Subject(s)
Drug Resistance, Microbial/genetics , Streptococcus suis/pathogenicity , Virulence/genetics , Zoonoses/microbiology , Animals , DNA, Bacterial/genetics , Disease Outbreaks , Genome, Bacterial , Humans , Phylogeny , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Streptococcus suis/classification , Streptococcus suis/drug effects , Streptococcus suis/genetics
9.
J Bacteriol ; 191(1): 261-77, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18931103

ABSTRACT

Bacterial infections of the lungs of cystic fibrosis (CF) patients cause major complications in the treatment of this common genetic disease. Burkholderia cenocepacia infection is particularly problematic since this organism has high levels of antibiotic resistance, making it difficult to eradicate; the resulting chronic infections are associated with severe declines in lung function and increased mortality rates. B. cenocepacia strain J2315 was isolated from a CF patient and is a member of the epidemic ET12 lineage that originated in Canada or the United Kingdom and spread to Europe. The 8.06-Mb genome of this highly transmissible pathogen comprises three circular chromosomes and a plasmid and encodes a broad array of functions typical of this metabolically versatile genus, as well as numerous virulence and drug resistance functions. Although B. cenocepacia strains can be isolated from soil and can be pathogenic to both plants and man, J2315 is representative of a lineage of B. cenocepacia rarely isolated from the environment and which spreads between CF patients. Comparative analysis revealed that ca. 21% of the genome is unique in comparison to other strains of B. cenocepacia, highlighting the genomic plasticity of this species. Pseudogenes in virulence determinants suggest that the pathogenic response of J2315 may have been recently selected to promote persistence in the CF lung. The J2315 genome contains evidence that its unique and highly adapted genetic content has played a significant role in its success as an epidemic CF pathogen.


Subject(s)
Burkholderia cepacia complex/genetics , Burkholderia cepacia complex/pathogenicity , Burkholderia/genetics , Burkholderia/pathogenicity , Cystic Fibrosis/microbiology , Genome, Bacterial , Burkholderia cepacia complex/drug effects , Burkholderia cepacia complex/isolation & purification , Chromosome Mapping , Chromosomes, Bacterial/genetics , DNA Primers , DNA, Bacterial/genetics , DNA, Circular/genetics , Drug Resistance, Microbial , Gene Amplification , Humans , Plants/microbiology , Plasmids , Polymerase Chain Reaction , Sputum/microbiology
10.
PLoS One ; 3(10): e3527, 2008.
Article in English | MEDLINE | ID: mdl-18953401

ABSTRACT

Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.


Subject(s)
Conserved Sequence , Telomere/genetics , Transcription Initiation Site/physiology , Trypanosoma brucei brucei/genetics , Animals , Antigenic Variation/genetics , Cell Line , Chromosome Mapping , Cloning, Molecular , Gene Expression Regulation , Gene Silencing , Host-Parasite Interactions/genetics , Phylogeny , Sequence Analysis, DNA , Sequence Tagged Sites , Trypanosoma brucei brucei/physiology
11.
J Bacteriol ; 190(11): 4027-37, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18375554

ABSTRACT

The gram-negative enteric bacterium Proteus mirabilis is a frequent cause of urinary tract infections in individuals with long-term indwelling catheters or with complicated urinary tracts (e.g., due to spinal cord injury or anatomic abnormality). P. mirabilis bacteriuria may lead to acute pyelonephritis, fever, and bacteremia. Most notoriously, this pathogen uses urease to catalyze the formation of kidney and bladder stones or to encrust or obstruct indwelling urinary catheters. Here we report the complete genome sequence of P. mirabilis HI4320, a representative strain cultured in our laboratory from the urine of a nursing home patient with a long-term (> or =30 days) indwelling urinary catheter. The genome is 4.063 Mb long and has a G+C content of 38.88%. There is a single plasmid consisting of 36,289 nucleotides. Annotation of the genome identified 3,685 coding sequences and seven rRNA loci. Analysis of the sequence confirmed the presence of previously identified virulence determinants, as well as a contiguous 54-kb flagellar regulon and 17 types of fimbriae. Genes encoding a potential type III secretion system were identified on a low-G+C-content genomic island containing 24 intact genes that appear to encode all components necessary to assemble a type III secretion system needle complex. In addition, the P. mirabilis HI4320 genome possesses four tandem copies of the zapE metalloprotease gene, genes encoding six putative autotransporters, an extension of the atf fimbrial operon to six genes, including an mrpJ homolog, and genes encoding at least five iron uptake mechanisms, two potential type IV secretion systems, and 16 two-component regulators.


Subject(s)
Bacterial Adhesion/genetics , Genome, Bacterial , Proteus mirabilis/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chemotaxis/genetics , Chromosomes, Bacterial , Female , Fimbriae, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Humans , Mice , Mice, Inbred CBA , Molecular Sequence Data , Movement/physiology , Plasmids/genetics , Proteus Infections/microbiology , Proteus mirabilis/pathogenicity , Proteus mirabilis/physiology , Urinary Tract Infections/microbiology , Virulence/genetics , Virulence Factors/genetics
12.
PLoS Genet ; 2(12): e206, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17173484

ABSTRACT

The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens.


Subject(s)
Genome, Bacterial , Yersinia enterocolitica/genetics , Evolution, Molecular , Genomics , Microarray Analysis , Molecular Sequence Data , Yersinia enterocolitica/classification , Yersinia enterocolitica/pathogenicity
13.
Genome Biol ; 7(4): R34, 2006.
Article in English | MEDLINE | ID: mdl-16640791

ABSTRACT

BACKGROUND: Rhizobium leguminosarum is an alpha-proteobacterial N2-fixing symbiont of legumes that has been the subject of more than a thousand publications. Genes for the symbiotic interaction with plants are well studied, but the adaptations that allow survival and growth in the soil environment are poorly understood. We have sequenced the genome of R. leguminosarum biovar viciae strain 3841. RESULTS: The 7.75 Mb genome comprises a circular chromosome and six circular plasmids, with 61% G+C overall. All three rRNA operons and 52 tRNA genes are on the chromosome; essential protein-encoding genes are largely chromosomal, but most functional classes occur on plasmids as well. Of the 7,263 protein-encoding genes, 2,056 had orthologs in each of three related genomes (Agrobacterium tumefaciens, Sinorhizobium meliloti, and Mesorhizobium loti), and these genes were over-represented in the chromosome and had above average G+C. Most supported the rRNA-based phylogeny, confirming A. tumefaciens to be the closest among these relatives, but 347 genes were incompatible with this phylogeny; these were scattered throughout the genome but were over-represented on the plasmids. An unexpectedly large number of genes were shared by all three rhizobia but were missing from A. tumefaciens. CONCLUSION: Overall, the genome can be considered to have two main components: a 'core', which is higher in G+C, is mostly chromosomal, is shared with related organisms, and has a consistent phylogeny; and an 'accessory' component, which is sporadic in distribution, lower in G+C, and located on the plasmids and chromosomal islands. The accessory genome has a different nucleotide composition from the core despite a long history of coexistence.


Subject(s)
Genome, Bacterial , Rhizobium leguminosarum/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adaptation, Physiological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Composition , Base Sequence , DNA Replication/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Ecosystem , Evolution, Molecular , Fabaceae/microbiology , Genes, Bacterial , Nitrogen Fixation/genetics , Phylogeny , Plasmids/chemistry , Plasmids/genetics , Replicon , Rhizobium leguminosarum/growth & development , Rhizobium leguminosarum/physiology , Symbiosis/genetics , Symbiosis/physiology
14.
Science ; 309(5733): 416-22, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16020726

ABSTRACT

African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of Trypanosoma brucei. The 26-megabase genome contains 9068 predicted genes, including approximately 900 pseudogenes and approximately 1700 T. brucei-specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of T. brucei, T. cruzi, and Leishmania major reveals the least overall metabolic capability in T. brucei and the greatest in L. major. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified.


Subject(s)
Genome, Protozoan , Glutathione/analogs & derivatives , Protozoan Proteins/genetics , Sequence Analysis, DNA , Spermidine/analogs & derivatives , Trypanosoma brucei brucei/genetics , Amino Acids/metabolism , Animals , Antigenic Variation , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Carbohydrate Metabolism , Chromosomes/genetics , Cytoskeleton/chemistry , Cytoskeleton/genetics , Cytoskeleton/physiology , Ergosterol/biosynthesis , Genes, Protozoan , Glutathione/metabolism , Glycosylphosphatidylinositols/biosynthesis , Humans , Lipid Metabolism , Molecular Sequence Data , Protein Transport , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Pseudogenes , Purines/metabolism , Pyrimidines/biosynthesis , Recombination, Genetic , Spermidine/metabolism , Trypanosoma brucei brucei/chemistry , Trypanosoma brucei brucei/immunology , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/parasitology
15.
Proc Natl Acad Sci U S A ; 101(39): 14240-5, 2004 Sep 28.
Article in English | MEDLINE | ID: mdl-15377794

ABSTRACT

Burkholderia pseudomallei is a recognized biothreat agent and the causative agent of melioidosis. This Gram-negative bacterium exists as a soil saprophyte in melioidosis-endemic areas of the world and accounts for 20% of community-acquired septicaemias in northeastern Thailand where half of those affected die. Here we report the complete genome of B. pseudomallei, which is composed of two chromosomes of 4.07 megabase pairs and 3.17 megabase pairs, showing significant functional partitioning of genes between them. The large chromosome encodes many of the core functions associated with central metabolism and cell growth, whereas the small chromosome carries more accessory functions associated with adaptation and survival in different niches. Genomic comparisons with closely and more distantly related bacteria revealed a greater level of gene order conservation and a greater number of orthologous genes on the large chromosome, suggesting that the two replicons have distinct evolutionary origins. A striking feature of the genome was the presence of 16 genomic islands (GIs) that together made up 6.1% of the genome. Further analysis revealed these islands to be variably present in a collection of invasive and soil isolates but entirely absent from the clonally related organism B. mallei. We propose that variable horizontal gene acquisition by B. pseudomallei is an important feature of recent genetic evolution and that this has resulted in a genetically diverse pathogenic species.


Subject(s)
Burkholderia pseudomallei/genetics , Melioidosis/microbiology , Adult , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Composition , Base Sequence , Burkholderia pseudomallei/metabolism , Burkholderia pseudomallei/pathogenicity , Chromosomes, Bacterial/physiology , Energy Metabolism/genetics , Evolution, Molecular , Female , Genome, Bacterial , Genomic Islands/genetics , Humans , Molecular Sequence Data , Virulence
16.
Proc Natl Acad Sci U S A ; 101(26): 9786-91, 2004 Jun 29.
Article in English | MEDLINE | ID: mdl-15213324

ABSTRACT

Staphylococcus aureus is an important nosocomial and community-acquired pathogen. Its genetic plasticity has facilitated the evolution of many virulent and drug-resistant strains, presenting a major and constantly changing clinical challenge. We sequenced the approximately 2.8-Mbp genomes of two disease-causing S. aureus strains isolated from distinct clinical settings: a recent hospital-acquired representative of the epidemic methicillin-resistant S. aureus EMRSA-16 clone (MRSA252), a clinically important and globally prevalent lineage; and a representative of an invasive community-acquired methicillin-susceptible S. aureus clone (MSSA476). A comparative-genomics approach was used to explore the mechanisms of evolution of clinically important S. aureus genomes and to identify regions affecting virulence and drug resistance. The genome sequences of MRSA252 and MSSA476 have a well conserved core region but differ markedly in their accessory genetic elements. MRSA252 is the most genetically diverse S. aureus strain sequenced to date: approximately 6% of the genome is novel compared with other published genomes, and it contains several unique genetic elements. MSSA476 is methicillin-susceptible, but it contains a novel Staphylococcal chromosomal cassette (SCC) mec-like element (designated SCC(476)), which is integrated at the same site on the chromosome as SCCmec elements in MRSA strains but encodes a putative fusidic acid resistance protein. The crucial role that accessory elements play in the rapid evolution of S. aureus is clearly illustrated by comparing the MSSA476 genome with that of an extremely closely related MRSA community-acquired strain; the differential distribution of large mobile elements carrying virulence and drug-resistance determinants may be responsible for the clinically important phenotypic differences in these strains.


Subject(s)
Drug Resistance, Bacterial/genetics , Evolution, Molecular , Genome, Bacterial , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Drug Resistance, Bacterial/drug effects , Genes, Bacterial/genetics , Genetic Variation , Genomics , Humans , Phylogeny , Sequence Analysis, DNA , Staphylococcus aureus/classification , Staphylococcus aureus/drug effects , Virulence/genetics
17.
Nat Genet ; 35(1): 32-40, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12910271

ABSTRACT

Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.


Subject(s)
Bordetella bronchiseptica/genetics , Bordetella pertussis/genetics , Bordetella/genetics , Genome, Bacterial , Base Sequence , Bordetella/metabolism , Bordetella/pathogenicity , Bordetella bronchiseptica/metabolism , Bordetella bronchiseptica/pathogenicity , Bordetella pertussis/metabolism , Bordetella pertussis/pathogenicity , DNA, Bacterial , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...