Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Adv Sci (Weinh) ; 11(9): e2304454, 2024 03.
Article in English | MEDLINE | ID: mdl-38115757

ABSTRACT

Bone is created by osteoblasts that secrete osteoid after which an ordered texture emerges, followed by mineralization. Plywood geometries are a hallmark of many trabecular and cortical bones, yet the origin of this texturing in vivo has never been shown. Nevertheless, extensive in vitro work revealed how plywood textures of fibrils can emerge from acidic molecular cholesteric collagen mesophases. This study demonstrates in sheep, which is the preferred model for skeletal orthopaedic research, that the deeper non-fibrillar osteoid is organized in a liquid-crystal cholesteric geometry. This basophilic domain, rich in acidic glycosaminoglycans, exhibits low pH which presumably fosters mesoscale collagen molecule ordering in vivo. The results suggest that the collagen fibril motif of twisted plywood matures slowly through self-assembly thermodynamically driven processes as proposed by the Bouligand theory of biological analogues of liquid crystals. Understanding the steps of collagen patterning in osteoid-maturation processes may shed new light on bone pathologies that emerge from collagen physico-chemical maturation imbalances.


Subject(s)
Bone and Bones , Collagen , Animals , Sheep , Osteoblasts , Cortical Bone
2.
Molecules ; 27(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408498

ABSTRACT

Fibrin-Type I collagen composite gels have been widely studied as biomaterials, in which both networks are usually formed simultaneously at a neutral pH. Here, we describe a new protocol in which mixed concentrated solutions of collagen and fibrinogen were first incubated at acidic pH to induce fibrinogen gel formation, followed by a pH change to neutral inducing collagen fiber formation. Thrombin was then added to form fibrin-collagen networks. Using this protocol, mixed gels containing 20 mg.mL-1 fibrin and up to 10 mg.mL-1 collagen could be prepared. Macroscopic observations evidenced that increasing the content of collagen increases the turbidity of the gels and decreases their shrinkage during the fibrinogen-to-fibrin conversion. The presence of collagen had a minor influence on the rheological properties of the gels. Electron microscopy allowed for observation of collagen fibers within the fibrin network. 2D cultures of C2C12 myoblasts on mixed gels revealed that the presence of collagen favors proliferation and local alignment of the cells. However, it interferes with cell differentiation and myotube formation, suggesting that further control of in-gel collagen self-assembly is required to elaborate fully functional biomaterials.


Subject(s)
Collagen Type I , Fibrin , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Collagen/chemistry , Fibrin/chemistry , Fibrinogen/chemistry , Gels/chemistry
3.
Biomacromolecules ; 22(6): 2740-2753, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34027656

ABSTRACT

Cellulose nanocrystals (CNCs) have been widely studied as fillers to form reinforced nanocomposites with a wide range of applications, including the biomedical field. Here, we evaluated the possibility to combine them with fibrinogen and obtain fibrin hydrogels with improved mechanical stability as potential cellular scaffolds. In diluted conditions at a neutral pH, it was evidenced that fibrinogen could adsorb on CNCs in a two-step process, favoring their alignment under flow. Composite hydrogels could be prepared from concentrated fibrinogen solutions and nanocrystals in amounts up to 0.3 wt %. CNCs induced a significant modification of the initial fibrin fibrillogenesis and final fibrin network structure, and storage moduli of all nanocomposites were larger than those of pure fibrin hydrogels. Moreover, optimal conditions were found that promoted muscle cell differentiation and formation of long myotubes. These results provide original insights into the interactions of CNCs with proteins with key physiological functions and offer new perspectives for the design of injectable fibrin-based formulations.


Subject(s)
Cellulose , Nanoparticles , Fibrin , Muscle Fibers, Skeletal , Nanogels
4.
ACS Biomater Sci Eng ; 7(2): 626-635, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33400500

ABSTRACT

The elaboration of scaffolds able to efficiently promote cell differentiation toward a given cell type remains challenging. Here, we engineered dense type I collagen threads with the aim of providing scaffolds with specific morphological and mechanical properties for C3H10T1/2 mesenchymal stem cells. Extrusion of pure collagen solutions at different concentrations (15, 30, and 60 mg/mL) in a PBS 5× buffer generated dense fibrillated collagen threads. For the two highest concentrations, threads displayed a core-shell structure with a marked fibril orientation of the outer layer along the longitudinal axis of the threads. Young's modulus and ultimate tensile stress as high as 1 and 0.3 MPa, respectively, were obtained for the most concentrated collagen threads without addition of any cross-linkers. C3H10T1/2 cells oriented themselves with a mean angle of 15-24° with respect to the longitudinal axis of the threads. Cells penetrated the 30 mg/mL scaffolds but remained on the surface of the 60 mg/mL ones. After three weeks of culture, cells displayed strong expression of the tendon differentiation marker Tnmd, especially for the 30 mg/mL threads. These results suggest that both the morphological and mechanical characteristics of collagen threads are key factors in promoting C3H10T1/2 differentiation into tenocytes, offering promising levers to optimize tissue engineering scaffolds for tendon regeneration.


Subject(s)
Collagen , Mesenchymal Stem Cells , Cell Differentiation , Tissue Engineering , Tissue Scaffolds
5.
Int J Biol Macromol ; 164: 1422-1431, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32735931

ABSTRACT

Fibrin-based gels are used in clinics as biological glues but their application as 3D cellularized scaffolds is hindered by processing and stability issues. Silicification of fibrin networks appears as a promising strategy not only to address these limitations but also to take advantage of the bioactivity of Si. However, it raises the question of the influence of silica sources on fibrin self-assembly. Here tetraethoxysilane, aminopropyltriethoxysilane and silica nanoparticles were used to design hybrid and nanocomposite fibrin-based hydrogels. By varying the concentration in silica source, we could evidence two regimes of interactions that depend on the extent of inorganic condensation. These interactions modulated the fibrillar structure of the fibrin network from more than 500 nm to less than 100 nm. These nanofibrillar hydrogels could exhibit higher mechanical properties than pure fibrin while preserving their capacity to support proliferation of myoblasts, opening promising perspectives for the use of fibrin-silica constructs in tissue engineering.


Subject(s)
Fibrin/chemistry , Hydrogels/chemistry , Silicon Dioxide/chemistry , Tissue Engineering/methods , Tissue Scaffolds , Animals , Cell Proliferation/drug effects , Circular Dichroism , Kinetics , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Myoblasts/drug effects , Myofibroblasts/metabolism , Nanoparticles/chemistry , Nephelometry and Turbidimetry , Propylamines/chemistry , Rheology , Silanes/chemistry , Spectroscopy, Fourier Transform Infrared
6.
Carbohydr Polym ; 236: 116042, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32172856

ABSTRACT

A platform of enzymatically-crosslinked Collagen/Tyramine hyaluronan derivative (Col/HA-Tyr) hydrogels with tunable compositions and gelation conditions was developed to evaluate the impact of the preparation conditions on their physical, chemical and biological properties. At low HA-Tyr content, hydrogels exhibited a fibrillar structure, with lower mechanical properties compared to pure Col hydrogels. At high HA-Tyr and Horse Radish Peroxydase (HRP) content, a microfibrillar network was formed beside the banded Col fibrils and a synergistic effect of the hybrid structure on mechanical properties was observed. These hydrogels were highly resistant against enzymatic degradation while keeping a high degree of hydration. Unlike HA-Tyr hydrogels, encapsulation of human dermal fibroblasts within Col/HA-Tyr hydrogels allowed for high cell viability. These results showed that high HA-Tyr and HRP concentrations are required to positively impact the physical properties of hydrogels while preserving collagen fibrils. Those Col/HA-Tyr hydrogels appear promising for novel tissue engineering applications following a biomimetic approach.


Subject(s)
Biomimetic Materials/chemistry , Fibrillar Collagens/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Animals , Armoracia/enzymology , Biomimetic Materials/chemical synthesis , Cell Survival/drug effects , Extracellular Matrix/chemistry , Fibrillar Collagens/chemical synthesis , Fibrillar Collagens/ultrastructure , Fibroblasts/drug effects , Horseradish Peroxidase/chemistry , Humans , Hyaluronic Acid/chemical synthesis , Hyaluronic Acid/ultrastructure , Hydrogels/chemical synthesis , Hydrogen Peroxide/chemistry , Rats, Wistar , Tyramine/analogs & derivatives , Tyramine/chemical synthesis
7.
ACS Appl Mater Interfaces ; 11(16): 14672-14683, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30913387

ABSTRACT

Type I collagen is the main component of the extracellular matrix (ECM). In vitro, under a narrow window of physicochemical conditions, type I collagen self-assembles to form complex supramolecular architectures reminiscent of those found in native ECM. Presently, a major challenge in collagen-based biomaterials is to couple the delicate collagen fibrillogenesis events with a controlled shaping process in non-denaturating conditions. In this work, an ice-templating approach promoting the structuration of collagen into macroporous monoliths is used. Instead of common solvent removal procedures, a new topotactic conversion approach yielding self-assembled ordered fibrous materials is implemented. These collagen-only, non-cross-linked scaffolds exhibit uncommon mechanical properties in the wet state, with a Young's modulus of 33 ± 12 kPa, an ultimate tensile stress of 33 ± 6 kPa, and a strain at failure of 105 ± 28%. With the help of the ice-patterned microridge features, normal human dermal fibroblasts and C2C12 murine myoblasts successfully migrate and form highly aligned populations within the resulting three-dimensional (3D) collagen scaffolds. These results open a new pathway to the development of new tissue engineering scaffolds ordered across various organization levels from the molecule to the macropore and are of particular interest for biomedical applications where large-scale 3D cell alignment is needed such as for muscular or nerve reconstruction.


Subject(s)
Cell Culture Techniques/methods , Collagen Type I/chemistry , Dermis/metabolism , Fibroblasts/metabolism , Myoblasts/metabolism , Tissue Scaffolds/chemistry , Animals , Dermis/cytology , Elastic Modulus , Fibroblasts/cytology , Humans , Mice , Myoblasts/cytology , Porosity
8.
Sci Rep ; 8(1): 7699, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769616

ABSTRACT

Understanding the biological processes enabling magnetotactic bacteria to maintain oriented chains of magnetic iron-bearing nanoparticles called magnetosomes is a major challenge. The study aimed to constrain the role of an external applied magnetic field on the alignment of magnetosome chains in Magnetospirillum magneticum AMB-1 magnetotactic bacteria immobilized within a hydrated silica matrix. A deviation of the chain orientation was evidenced, without significant impact on cell viability, which was preserved after the field was turned-off. Transmission electron microscopy showed that the crystallographic orientation of the nanoparticles within the chains were preserved. Off-axis electron holography evidenced that the change in magnetosome orientation was accompanied by a shift from parallel to anti-parallel interactions between individual nanocrystals. The field-induced destructuration of the chain occurs according to two possible mechanisms: (i) each magnetosome responds individually and reorients in the magnetic field direction and/or (ii) short magnetosome chains deviate in the magnetic field direction. This work enlightens the strong dynamic character of the magnetosome assembly and widens the potentialities of magnetotactic bacteria in bionanotechnology.


Subject(s)
Magnetic Fields , Magnetosomes/metabolism , Magnetospirillum/growth & development , Magnetospirillum/metabolism , Silicon Dioxide/chemistry , Magnetosomes/chemistry
9.
Langmuir ; 34(1): 406-415, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29224358

ABSTRACT

Silica nanoparticles appear as promising drug carriers for intracellular delivery. However, the mechanisms by which they are degraded within cells remain largely unknown. In this context, we have prepared three types of PEGylated fluorescent silica nanoparticles with various internal structures (core-shell biocomposite, multilayered, and hollow mesoporous) and studied their degradation in a buffer, in a culture medium, and in contact with human dermal fibroblasts. All particles were prone to dissolve in solution, leading to an increase of porosity and/or the precipitation of new colloids and eventually fragmentation, with a faster rate in the medium compared to that in the buffer. All particles were also uptaken by the cells without significant cytotoxic effect. Their intracellular degradation occurred faster than in suspension, but following almost similar dissolution mechanisms. These results strongly suggest that in these conditions, silica nanoparticles must be primarily considered as hydrolytically degraded and not biodegraded, a point of importance for their future applications in drug delivery.

10.
Langmuir ; 32(39): 10073-10082, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27609666

ABSTRACT

Silica-coated gold-silver alloy nanoshells were obtained via a bioinspired approach using gelatin and poly-l-lysine (PLL) as biotemplates for the interfacial condensation of sodium silicate solutions. X-ray photoelectron spectroscopy was used as an efficient tool for the in-depth and complete characterization of the chemical features of nanoparticles during the whole synthetic process. Cytotoxicity assays using HaCaT cells evidenced the detrimental effect of the gelatin nanocoating and significant induction of late apoptosis after silicification. In contrast, PLL-modified nanoparticles had less biological impact that was further improved by the silica layer, and uptake rates of up to 50% of those of the initial particles could be achieved. These results are discussed considering the effect of nanosurface confinement of the biopolymers on their chemical and biological reactivity.

SELECTION OF CITATIONS
SEARCH DETAIL