Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer Res Clin Oncol ; 150(6): 320, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914803

ABSTRACT

PURPOSE: Tumor-associated macrophages (TAMs) play a critical role in hepatocellular carcinoma (HCC) progression and metastasis. Systematic investigation of the cross-talk between TAMs and HCC may help in searching for the critical target to guard against HCC metastasis. METHODS AND RESULTS: Herein, we found that TREM1 highly expressed in HCC tissue by analyzing the data obtain from GEO database. Interestingly, the results indicated that TREM1 was primarily expressed by monocytes. Immune infiltration studies further validated that TREM1 expression was positively related with increased infiltration of macrophages in HCC tissues. In vitro, we observed that TREM1 knockdown significantly abrogated the effect of TAMs in promoting the metastasis and epithelial-mesenchymal transition (EMT) of HCC cells. Additionally, cytokine array detection identified CCL7 as the main responsive cytokine following with TREM1 knockdown in TAMs. CONCLUSION: Taken together, our findings strongly suggested that high expression of TREM1 was positively associated with metastasis and poor prognosis of HCC. Furthermore, TAMs expressing TREM1 contribute to EMT-based metastasis through secreting CCL7. These results provide a novel insight into the potential development of targeting the TREM1/CCL7 pathway for preventing metastatic HCC.


Subject(s)
Carcinoma, Hepatocellular , Epithelial-Mesenchymal Transition , Liver Neoplasms , Triggering Receptor Expressed on Myeloid Cells-1 , Humans , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Prognosis , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Cell Line, Tumor , Male , Female , Neoplasm Metastasis
2.
Front Cell Dev Biol ; 9: 738709, 2021.
Article in English | MEDLINE | ID: mdl-34722520

ABSTRACT

Pancreatic cancer is one of the major malignancies and causes of mortality worldwide. E3 ubiquitin-protein ligases transfer activated ubiquitin from ubiquitin-conjugating enzymes to protein substrates and confer substrate specificity in cancer. In this study, we first downloaded data from The Cancer Genome Atlas pancreatic adenocarcinoma dataset, acquired all 27 differentially expressed genes (DEGs), and identified genomic alterations. Then, the prognostic significance of DEGs was analyzed, and eight DEGs (MECOM, CBLC, MARCHF4, RNF166, TRIM46, LONRF3, RNF39, and RNF223) and two clinical parameters (pathological N stage and T stage) exhibited prognostic significance. RNF223 showed independent significance as an unfavorable prognostic marker and was chosen for subsequent analysis. Next, the function of RNF223 in the pancreatic cancer cell lines ASPC-1 and PANC-1 was investigated, and RNF223 silencing promoted pancreatic cancer growth and migration. To explore the potential targets and pathways of RNF223 in pancreatic cancer, quantitative proteomics was applied to analyze differentially expressed proteins, and metabolism-related pathways were primarily enriched. Finally, the reason for the elevated expression of RNF223 was analyzed, and KLF4 was shown to contribute to the increased expression of RNF233. In conclusion, this study comprehensively analyzed the clinical significance of E3 ligases. Functional assays revealed that RNF223 promotes cancer by regulating cell metabolism. Finally, the elevated expression of RNF223 was attributed to KLF4-mediated transcriptional activation. This study broadens our knowledge regarding E3 ubiquitin ligases and signal transduction and provides novel markers and therapeutic targets in pancreatic cancer.

3.
Artif Cells Nanomed Biotechnol ; 47(1): 2830-2837, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31298047

ABSTRACT

Abnormal expression of microRNAs (miRNAs) contributes to tumour growth and invasion. MiR-326 expression often down-regulates in several kinds of cancer and low expression of miR-326 is linked with poor prognosis in cancer patients. In the present study, we aimed to explore the modulatory mechanism of miR-326 in hepatocellular carcinoma (HCC). miR-326 expression was significantly decreased in HCC cell lines and tissues. miR-326 decreased HCC cell growth by affecting cell-cycle progression and by promoting apoptosis. In addition, miR-326 inhibited HCC cell invasion by decreasing the EMT phenotype. We found that miR-326 functioned as a tumour suppressor by repressing its down-stream target PDK1. C-myc contributed to miR-326 down-regulation through binding at its promoter and inhibited its expression. Based on these results, we conducted a therapeutic experiment by using gold nano-particles (AuNPs) carrying miR-326. Restoration of miR-326 reduced tumour growth in vivo. Our findings suggest that miR-326 may be a candidate prognostic biomarker and a target for new therapies in HCC patients.


Subject(s)
Carcinoma, Hepatocellular/pathology , Gold/chemistry , Metal Nanoparticles/chemistry , MicroRNAs/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Drug Carriers/chemistry , Epithelial-Mesenchymal Transition/genetics , Humans , Liver Neoplasms/pathology , MicroRNAs/chemistry , Molecular Targeted Therapy
4.
J Cell Mol Med ; 22(11): 5477-5485, 2018 11.
Article in English | MEDLINE | ID: mdl-30133116

ABSTRACT

Recently, it was reported that long non-coding RNAs (lncRNAs) participated in promoting hepatocellular carcinoma (HCC) initiation and progression. Herein, we reported that the expression level of LINC01287 was elevated in HCC cell lines and tissues. LINC01287 down-regulation inhibited HCC cells growth and invasion both in vitro and in vivo. LINC01287 exerted as a ceRNA and negatively regulated miR-298 expression. MYB was identified as a downstream target of miR-298. The miR-298/MYB axis mediated LINC01287's effect on HCC. To the best of our knowledge, our findings provided the first evidence that LINC01287 functioned as an oncogene in HCC. LINC01287 may be a candidate prognostic biomarker and a target for new therapies in HCC patients.


Subject(s)
Carcinoma, Hepatocellular/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins c-myb/genetics , RNA, Long Noncoding/genetics , Animals , Carcinogenesis/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Heterografts , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology
5.
J Exp Clin Cancer Res ; 37(1): 149, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30001751

ABSTRACT

BACKGROUND: The long non-coding RNAs (lncRNAs) have participated in the promotion of hepatocellular carcinoma (HCC) initiation and progression. Nevertheless, the biological role and underlying mechanism of LINC01287 in HCC has never been reported. METHODS: The TGCA database was used to explore the abnormal expression of lncRNAs in HCC. Real-time PCR and in situ hybridization assays were used to examine the expression of LINC01287 in HCC tissues. The clinicopathological characteristics of HCC patients in relation to LINC01287 expression were then analyzed. Infection of cells with the si-LINC01287 lentiviral vector was performed to down-regulate LINC01287 expression in HCC cells. MTT and colony formation assays were performed to examine cell growth ability, and FACS analysis was performed to examine the cell cycle and apoptosis. A Boyden assay was used to examine HCC cell invasion ability, and RNA immunoprecipitation tested the interaction between LINC01287 and miR-298. A luciferase reporter assay was used to examine whether STAT3 was a direct target of miR-298, and chromatin immunoprecipitation (ChIP) was used to examine the potential binding of c-jun to the miR-298 promoter. RESULTS: We revealed that the expression of LINC01287 was increased in HCC cell lines, as well as tissues. Knockdown of LINC01287 decreased HCC cell growth and invasion both in vitro and in vivo. LINC01287 can negatively regulate miR-298 expression by acting as a ceRNA. miR-298 directly targeted STAT3 and inhibited its expression. LINC01287 exerted its function via the miR-298/STAT3 axis in HCC. Interestingly, STAT3 elevated LINC01287 expression via c-jun, which bound to the LINC01287 promoter. A feedback loop was also discovered between LINC01287 and the miR-298/STAT3 axis. CONCLUSIONS: Our data indicated that LINC01287 played an oncogenic role in HCC growth and metastasis and that this lncRNA might serve as a novel molecular target for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , MicroRNAs/metabolism , STAT3 Transcription Factor/metabolism , Carcinoma, Hepatocellular/pathology , Epithelial-Mesenchymal Transition , Female , Humans , Liver Neoplasms/pathology , Male , Phenotype , Transfection
6.
Tumour Biol ; 39(2): 1010428317690999, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28231734

ABSTRACT

Abnormal expression of long non-coding RNA often contributes to unrestricted growth of cancer cells. Long non-coding RNA XIST expression is upregulated in several cancers; however, its modulatory mechanisms have not been reported in hepatocellular carcinoma. In this study, we found that XIST expression was significantly increased in hepatocellular carcinoma tissues and cell lines. XIST promoted cell cycle progression from the G1 phase to the S phase and protected cells from apoptosis, which contributed to hepatocellular carcinoma cell growth. In addition, we revealed that there was reciprocal repression between XIST and miR-139-5p. PDK1 was identified as a direct target of miR-139-5p. We proposed that XIST was responsible for hepatocellular carcinoma cell proliferation, and XIST exerted its function through the miR-139-5p/PDK1 axis.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , MicroRNAs/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/biosynthesis , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Case-Control Studies , Cell Line, Tumor , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...