Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 425
Filter
1.
Discov Oncol ; 15(1): 271, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976093

ABSTRACT

BACKGROUND: Cellular senescence is essential to TME development, progression, and remodeling. Few studies have examined cellular senescence in HCC after TACE. Investigating the relationship between cellular senescence, post-TACE prognosis, the TME, and immune treatment responses is crucial. METHODS: We analyzed the GSE104580 dataset to identify DEGs. A cellular senescence-related signature was developed using LASSO Cox regression in the GSE14520 dataset and validated in the ICGC dataset. High- and low-risk subgroups were compared using GSVA and GSEA. Correlation studies were conducted to explore the relationship between the prognostic model, immune infiltration, immunotherapy response, and drug sensitivity. RESULTS: A cellular senescence-related signature comprising FOXM1, CDK1, CHEK1, and SERPINE1 was created and validated. High-risk patients showed significantly lower OS than low-risk patients. High-risk patients had carcinogenetic pathways activated, immunosuppressive cells infiltrated, and immunomodulatory genes overexpressed. They also showed higher sensitivity to EPZ004777_1237 and MK-2206_1053 and potential benefits from GSK-3 inhibitor IX, nortriptyline, lestaurtinib, and JNK-9L. CONCLUSIONS: This study constructed a cellular senescence-related signature that could be used to predict HCC patients' responses to and prognosis after TACE treatment, aiding in the development of personalized treatment plans.

2.
Adv Mater ; : e2403641, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861754

ABSTRACT

The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.

3.
J Mater Chem B ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899871

ABSTRACT

Three-dimensional bioprinting is a potent biofabrication technique in tissue engineering but is limited by inadequate bioink availability. Plant-derived proteins are increasingly recognized as highly promising yet underutilized materials for biomedical product development and hold potential for use in bioink formulations. Herein, we report the development of a biocompatible plant protein bioink from pea protein isolate. Through pH shifting, ethanol precipitation, and lyophilization, the pea protein isolate (PPI) transformed from an insoluble to a soluble form. Next, it was modified with glycidyl methacrylate to obtain methacrylate-modified PPI (PPIGMA), which is photocurable and was used as the precursor of bioink. The mechanical and microstructural studies of the hydrogel containing 16% PPIGMA revealed a suitable compress modulus and a porous network with a pore size over 100 µm, which can facilitate nutrient and waste transportation. The PPIGMA bioink exhibited good 3D bioprinting performance in creating complex patterns and good biocompatibility as plenty of viable cells were observed in the printed samples after 3 days of incubation in the cell culture medium. No immunogenicity of the PPIGMA bioink was identified as no inflammation was observed for 4 weeks after implantation in Sprague Dawley rats. Compared with methacrylate-modified gelatin, the PPIGMA bioink significantly enhanced cartilage regeneration in vitro and in vivo, suggesting that it can be used in tissue engineering applications. In summary, the PPIGMA bioink can be potentially used for tissue engineering applications.

4.
J Psychosom Res ; 184: 111831, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38905780

ABSTRACT

OBJECTIVE: Inflammation is implicated in the pathophysiology of depression and type 2 diabetes (T2D) and is linked to social determinants of health (SDoH) associated with socioeconomic disadvantage. The objective of this review is to identify and map the range of SDoHs associated with inflammation in depression, T2D, or their co-occurrence among women. METHODS: PubMed, CINAHL, PsychINFO, and Web of Science were searched March-July 2023 to identify studies where 1) an SDoH was a predictor or independent variable, 2) depression or T2D was a clinical focus, 3) inflammatory markers were collected, and 4) analysis was specific to women. We used the National Institute on Minority Health and Health Disparities research framework to guide searching SDoHs, organize findings, and identify gaps. RESULTS: Of the 1135 studies retrieved, 46 met criteria. Within the reviewed studies, the most used inflammatory measures were C-reactive protein, interleukin-6, and tumor necrosis factor-α, and the most studied SDoHs were early life stress and socioeconomic status. Individual and interpersonal-level variables comprised the bulk of SDoHs in the included studies, while few to no studies examined built environment (n = 6) or health system level (n = 0) factors. Disadvantageous SDoHs were associated with higher levels of inflammation across the included studies. CONCLUSION: The scope and intersection of depression and T2D represent a syndemic that contributes to and results from socioeconomic inequities and disproportionately affects women. Simultaneous inclusion of social and inflammatory measures, particularly understudied SDoHs, is needed to clarify potent targets aimed at advancing health and equity.

5.
Math Biosci Eng ; 21(4): 5007-5031, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38872524

ABSTRACT

In demanding application scenarios such as clinical psychotherapy and criminal interrogation, the accurate recognition of micro-expressions is of utmost importance but poses significant challenges. One of the main difficulties lies in effectively capturing weak and fleeting facial features and improving recognition performance. To address this fundamental issue, this paper proposed a novel architecture based on a multi-scale 3D residual convolutional neural network. The algorithm leveraged a deep 3D-ResNet50 as the skeleton model and utilized the micro-expression optical flow feature map as the input for the network model. Drawing upon the complex spatial and temporal features inherent in micro-expressions, the network incorporated multi-scale convolutional modules of varying sizes to integrate both global and local information. Furthermore, an attention mechanism feature fusion module was introduced to enhance the model's contextual awareness. Finally, to optimize the model's prediction of the optimal solution, a discriminative network structure with multiple output channels was constructed. The algorithm's performance was evaluated using the public datasets SMIC, SAMM, and CASME Ⅱ. The experimental results demonstrated that the proposed algorithm achieves recognition accuracies of 74.6, 84.77 and 91.35% on these datasets, respectively. This substantial improvement in efficiency compared to existing mainstream methods for extracting micro-expression subtle features effectively enhanced micro-expression recognition performance and increased the accuracy of high-precision micro-expression recognition. Consequently, this paper served as an important reference for researchers working on high-precision micro-expression recognition.


Subject(s)
Algorithms , Facial Expression , Neural Networks, Computer , Humans , Imaging, Three-Dimensional/methods , Face , Databases, Factual , Pattern Recognition, Automated/methods , Image Processing, Computer-Assisted/methods
6.
Cancer Cell ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38942026

ABSTRACT

KRAS G12D is the most frequently mutated oncogenic KRAS subtype in solid tumors and remains undruggable in clinical settings. Here, we developed a high affinity, selective, long-acting, and non-covalent KRAS G12D inhibitor, HRS-4642, with an affinity constant of 0.083 nM. HRS-4642 demonstrated robust efficacy against KRAS G12D-mutant cancers both in vitro and in vivo. Importantly, in a phase 1 clinical trial, HRS-4642 exhibited promising anti-tumor activity in the escalating dosing cohorts. Furthermore, the sensitization and resistance spectrum for HRS-4642 was deciphered through genome-wide CRISPR-Cas9 screening, which unveiled proteasome as a sensitization target. We further observed that the proteasome inhibitor, carfilzomib, improved the anti-tumor efficacy of HRS-4642. Additionally, HRS-4642, either as a single agent or in combination with carfilzomib, reshaped the tumor microenvironment toward an immune-permissive one. In summary, this study provides potential therapies for patients with KRAS G12D-mutant cancers, for whom effective treatments are currently lacking.

7.
J Nat Prod ; 87(6): 1582-1590, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38785214

ABSTRACT

Bioactivity-based molecular networking-guided fractionation enabled the isolation of three new polycyclic tetramic acids bearing cis-decalin, epicolidines A-C (1-3), along with one known compound, PF 1052 (4), from the endophytic fungus Epicoccum sp. 1-042 collected in Tibet, China. Their structures were assigned on the basis of extensive spectroscopic data, partial hydrolysis, advanced Marfey's method, quantum chemistry calculations, and X-ray diffraction analysis. Compounds 2-4 displayed promising activities against Gram-positive bacteria in vitro. Particularly, compound 4 displayed remarkable potential against vancomycin-resistant Enterococcus faecium (VRE) with an MIC value of 0.25 µg/mL, lower than the MIC (0.5 µg/mL) of the antibiotic combination quinupristin/dalfopristin (Q/D). In a further in vivo study, compound 4 increased the survival rate to 100% in the VRE-G. mellonella infection model at a concentration of 10 mg/kg.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Molecular Structure , Ascomycota/chemistry , Tibet , Animals , Enterococcus faecium/drug effects , Vancomycin-Resistant Enterococci/drug effects , Pyrrolidinones/pharmacology , Pyrrolidinones/chemistry , Pyrrolidinones/isolation & purification
8.
Biotechnol Biofuels Bioprod ; 17(1): 60, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711141

ABSTRACT

BACKGROUND: The structural diversity of extracellular polymeric substances produced by microorganisms is attracting particular attention. Poly-gamma-glutamic acid (γ-PGA) is a widely studied extracellular polymeric substance from Bacillus species. The function of γ-PGA varies with its molecular weight (Mw). RESULTS: Herein, different endogenous promoters in Bacillus licheniformis were selected to regulate the expression levels of pgdS, resulting in the formation of γ-PGA with Mw values ranging from 1.61 × 103 to 2.03 × 104 kDa. The yields of γ-PGA and exopolysaccharides (EPS) both increased in the pgdS engineered strain with the lowest Mw and viscosity, in which the EPS content was almost tenfold higher than that of the wild-type strain. Subsequently, the compositions of EPS from the pgdS engineered strain also changed. Metabolomics and RT-qPCR further revealed that improving the transportation efficiency of EPS and the regulation of carbon flow of monosaccharide synthesis could affect the EPS yield. CONCLUSIONS: Here, we present a novel insight that increased pgdS expression led to the degradation of γ-PGA Mw and changes in EPS composition, thereby stimulating EPS and γ-PGA production. The results indicated a close relationship between γ-PGA and EPS in B. licheniformis and provided an effective strategy for the controlled synthesis of extracellular polymeric substances.

9.
Sci Rep ; 14(1): 12163, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806553

ABSTRACT

Hepatocellular carcinoma (HCC) is a significant contributor to morbidity and mortality worldwide. The interaction between receptors and ligands is the primary mode of intercellular signaling and plays a vital role in the progression of HCC. This study aimed to identify the macrophage-related receptor ligand marker genes associated with HCC and further explored the molecular immune mechanisms attributed to altered biomarkers. Single-cell RNA sequencing data containing primary and recurrent samples were downloaded from the China National GeneBank. Cell types were first identified to explore differences between immune cells from different sample sources. CellChat analysis was used to infer and analyze intercellular communication networks quantitatively. Three molecular subtypes were constructed based on the screened twenty macrophage-associated receptor ligand genes. Bulk RNA-Seq data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. After the screening, the minor absolute shrinkage and selection operator (LASSO) regression model was employed to identify key markers. After collecting peripheral blood and clinical information from patients, an enzyme-linked immunosorbent assay (ELISA) was used to detect the correlation between key markers and IL-10, one of the macrophage markers. After developing a new HCC risk adjustment model and conducting analysis, it was found that there were significant differences in immune status and gene mutations between the high-risk and low-risk groups of patients based on macrophage-associated receptor and ligand genes. This study identified SPP1, ANGPT2, and NCL as key biological targets for HCC. The drug-gene interaction network analysis identified wortmannin, ribavirin, and tarnafloxin as potential therapeutic drugs for the three key markers. In a clinical cohort study, patients with immune checkpoint inhibitor (ICI) resistance had significantly higher expression levels of OPN, ANGPT2, NCL, and IL-10 than patients with ICI-responsiveness. These three key markers were positively correlated with the expression level of IL-10. The signature based on macrophage-associated receptor and ligand genes can accurately predict the prognosis of patients with HCC and the sensitivity to immunotherapy. These results may help guide the development of targeted prevention and personalized treatment of HCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Ligands , Male , Female , Middle Aged , Gene Expression Regulation, Neoplastic , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Macrophages/metabolism , Macrophages/immunology , Multiomics
10.
ACS Appl Mater Interfaces ; 16(20): 26057-26065, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722302

ABSTRACT

To address the issue of high energy consumption associated with monoethanolamine (MEA) regeneration in the CO2 capture process, solid acid catalysts have been widely investigated due to their performance in accelerating carbamate decomposition. The recently discovered carbon nanotube (CNT) catalyst presents efficient catalytic activity for bicarbonate decomposition. In this paper, bifunctional catalysts SO42-/TiO2-CNT (STC) were prepared, which could simultaneously catalyze carbamate and bicarbonate decomposition, and outstanding catalytic performance has been exhibited. STC significantly increased the CO2 desorption amount by 82.3% and decreased the relative heat duty by 46% compared to the MEA-CO2 solution without catalysts. The excellent stability of STC was confirmed by 15 cyclic absorption-desorption experiments, showing good practical feasibility for decreasing energy consumption in an industrial CO2 capture process. Furthermore, associated with the results of experimental characterization and theoretical calculations, the synergistic catalysis of STC catalysts via proton and charge transfer was proposed. This work demonstrated the potential of STC catalysts in improving the efficiency of amine regeneration processes and reducing energy consumption, contributing to the design of more effective and economical catalysts for carbon capture.

11.
Crit Rev Biotechnol ; : 1-19, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797672

ABSTRACT

Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using Phaffia rhodozyma. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in P. rhodozyma, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as crtYB, crtS, and crtI, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in P. rhodozyma and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.

12.
J Forensic Sci ; 69(4): 1400-1406, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38567838

ABSTRACT

The impact of contextual bias has been demonstrated repeatedly across forensic domains; however, research on this topic in forensic toxicology is very limited. In our previous study, experimental data from only one context version were compared with the actual forensic biasing casework. As a follow-up, this controlled experiment with 159 forensic toxicology practitioners was conducted, to test whether knowledge of different contextual information influenced their forensic decision-making. Participants in different context groups were tasked to identify testing strategies for carbon monoxide and opiate drugs. The results of chi-squared tests for their selections and two context groups exhibited statistically significant differences (p < 0.05 or p < 0.01). These findings show contextual information can bias forensic toxicology decisions about testing strategies, despite it is a relatively objective domain in forensic science.


Subject(s)
Decision Making , Forensic Toxicology , Humans , China , Male , Female , Bias , Adult , Middle Aged , Substance Abuse Detection , Narcotics/analysis
13.
Xenobiotica ; 54(5): 233-247, 2024 May.
Article in English | MEDLINE | ID: mdl-38638108

ABSTRACT

This study explored the distribution of esculin microspheres in rabbit brain tissue following intravitreal injection and investigated the possibility of direct entry of the drug into the brain through the eye, to develop a formulation with enhanced therapeutic efficacy against Parkinson's disease.Chitosan microspheres of esculin were prepared via an emulsification cross-linking method and their characteristics were evaluated, including angle of repose, bulk density, and swelling ratio. Furthermore, the pharmacokinetic parameters and brain tissue distribution in rabbits were compared among groups administered esculin eye drops, intravitreal esculin solution, and intravitreal esculin microspheres, to determine whether esculin could enter the brain through an ocular route.The results showed that the prepared esculin microspheres were spherical and had good fluidity. Notably, intravitreal administration enhanced the area under the curve (AUC) of esculin in the thalamus. Delivery through microspheres prolonged the drug retention time in both rabbit plasma and brain tissues, as well as the brain-targeting efficiency of esculin.The collective findings indicated that there may be a direct eye-brain pathway facilitating enter of esculin microspheres into brain tissue after intravitreal injection, supporting the utility of intravitreal esculin microspheres as an effective therapeutic formulation for Parkinson's disease, a long-term chronic condition.


Subject(s)
Brain , Esculin , Intravitreal Injections , Microspheres , Animals , Rabbits , Brain/metabolism , Esculin/pharmacokinetics , Esculin/administration & dosage , Tissue Distribution
14.
ACS Appl Mater Interfaces ; 16(15): 19751-19763, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38581368

ABSTRACT

Diamond is widely acknowledged as the hardest naturally occurring material. Nevertheless, when exposed to friction against ferrous metals, it is prone to graphitization or amorphization, which limits the utilization of its extremely high hardness and wear resistance. These issues have persisted for decades without an effective solution. Here, we report that a covalently bonded heterostructure with mixed-dimensional carbons as a high-performance solid lubricant could effectively reduce diamond surface friction and mechanochemical wear with excellent load capacity and durability. When subjected to dry friction and heavy loads (20-150 N), the heterostructure exhibited a notable improvement over pristine diamond with reduced friction coefficients and relative wear rates by 22-45 and 67-91%, respectively. Especially under a 20 N load, the relative wear rate was an order of magnitude lower than that of pristine diamond. Additionally, experiments and molecular dynamics simulations revealed that the heterostructure integrated the outstanding properties of diamond (three-dimensional (3D)), nanographite (3D), and graphene (two-dimensional (2D)), resulting in improved lubrication and antiwear performance that could not be achieved by the individual carbon materials. The findings in this work will be beneficial to overcome the ferrous metal forbidden zone of diamond and are expected to expand the applications of engineered diamond surfaces and graphite/graphene in tribology, mechanics, and electronic fields.

15.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38521993

ABSTRACT

Alzheimer's disease (AD) and mild cognitive impairment (MCI) both show abnormal resting-state functional connectivity (rsFC) of default mode network (DMN), but it is unclear to what extent these abnormalities are shared. Therefore, we performed a comprehensive meta-analysis, including 31 MCI studies and 20 AD studies. MCI patients, compared to controls, showed decreased within-DMN rsFC in bilateral medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC), precuneus/posterior cingulate cortex (PCC), right temporal lobes, and left angular gyrus and increased rsFC between DMN and left inferior temporal gyrus. AD patients, compared to controls, showed decreased rsFC within DMN in bilateral mPFC/ACC and precuneus/PCC and between DMN and left inferior occipital gyrus and increased rsFC between DMN and right dorsolateral prefrontal cortex. Conjunction analysis showed shared decreased rsFC in mPFC/ACC and precuneus/PCC. Compared to MCI, AD had decreased rsFC in left precuneus/PCC and between DMN and left inferior occipital gyrus and increased rsFC in right temporal lobes. MCI and AD share a decreased within-DMN rsFC likely underpinning episodic memory deficits and neuropsychiatric symptoms, but differ in DMN rsFC alterations likely related to impairments in other cognitive domains such as language, vision, and execution. This may throw light on neuropathological mechanisms in these two stages of dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Default Mode Network , Cognitive Dysfunction/pathology , Gyrus Cinguli , Temporal Lobe/pathology , Magnetic Resonance Imaging , Brain , Brain Mapping
16.
Chin J Cancer Res ; 36(1): 66-77, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38455368

ABSTRACT

Objective: Positive peritoneal lavege cytology (CY1) gastric cancer is featured by dismal prognosis, with high risks of peritoneal metastasis. However, there is a lack of evidence on pathogenic mechanism and signature of CY1 and there is a continuous debate on CY1 therapy. Therefore, exploring the mechanism of CY1 is crucial for treatment strategies and targets for CY1 gastric cancer. Methods: In order to figure out specific driver genes and marker genes of CY1 gastric cancer, and ultimately offer clues for potential marker and risk assessment of CY1, 17 cytology-positive gastric cancer patients and 31 matched cytology-negative gastric cancer patients were enrolled in this study. The enrollment criteria were based on the results of diagnostic laparoscopy staging and cytology inspection of exfoliated cells. Whole exome sequencing was then performed on tumor samples to evaluate genomic characterization of cytology-positive gastric cancer. Results: Least absolute shrinkage and selection operator (LASSO) algorithm identified 43 cytology-positive marker genes, while MutSigCV identified 42 cytology-positive specific driver genes. CD3G and CDKL2 were both driver and marker genes of CY1. Regarding mutational signatures, driver gene mutation and tumor subclone architecture, no significant differences were observed between CY1 and negative peritoneal lavege cytology (CY0). Conclusions: There might not be distinct differences between CY1 and CY0, and CY1 might represent the progression of CY0 gastric cancer rather than constituting an independent subtype. This genomic analysis will thus provide key molecular insights into CY1, which may have a direct effect on treatment recommendations for CY1 and CY0 patients, and provides opportunities for genome-guided clinical trials and drug development.

17.
ACS Appl Mater Interfaces ; 16(11): 14015-14025, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446708

ABSTRACT

With the rapid advances in imperceptible and epidermal electronics, the research on ultraflexible organic light-emitting diodes (OLEDs) has become increasingly significant, owing to their excellent flexibility and conformability to the human body. It is highly desirable to develop submicrometer-thick ultraflexible OLEDs to enable the devices to seamlessly conform to the surface of arbitrary-shaped objects and still function properly. However, it remains a huge challenge for currently reported OLEDs due to the lack of an appropriate stripping strategy. Here, for the first time, we develop a facile photoregulated stripping strategy for the fabrication of high-performance ultraflexible OLEDs with submicron thickness. Under ultraviolet (UV) irradiation, the surface adhesion force of the ultrathin photopolymer membrane can be adjusted from 16.9 to 5.1 N/m, thereby effectively controlling the laminating and detaching process. Based on this strategy, the resultant device thickness is as low as 0.821 µm, which is the lowest record among flexible OLEDs reported to date. More remarkably, excellent electrical properties with a maximum current efficiency (CE) of 62.5 cd/A, an external quantum efficiency (EQE) of 17.8%, and a low turn-on voltage of 2.5 V are realized, which are superior to almost all of the reported ultraflexible OLEDs with thicknesses below 10 µm. Based on versatile ultraflexible OLEDs, all-organic and skin-mounted displays are successfully realized by employing a conformable organic thin-film transistor (OTFT) as the driver. This work offers a feasible strategy for advancing OLEDs from flexible to ultraflexible, showing significant application potential in future epidermal electronics and conformal displays.

18.
Math Biosci Eng ; 21(3): 3594-3617, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38549297

ABSTRACT

A Multiscale-Motion Embedding Pseudo-3D (MME-P3D) gesture recognition algorithm has been proposed to tackle the issues of excessive parameters and high computational complexity encountered by existing gesture recognition algorithms deployed in mobile and embedded devices. The algorithm initially takes into account the characteristics of gesture motion information, integrating the channel attention (CE) mechanism into the pseudo-3D (P3D) module, thereby constructing a P3D-C feature extraction network that can efficiently extract spatio-temporal feature information while reducing the complexity of the algorithmic model. To further enhance the understanding and learning of the global gesture movement's dynamic information, a Multiscale Motion Embedding (MME) mechanism is subsequently designed. The experimental findings reveal that the MME-P3D model achieves recognition accuracies reaching up to 91.12% and 83.06% on the self-constructed conference gesture dataset and the publicly available Chalearn 2013 dataset, respectively. In comparison with the conventional 3D convolutional neural network, the MME-P3D model demonstrates a significant advantage in terms of parameter count and computational requirements, which are reduced by as much as 82% and 83%, respectively. This effectively addresses the limitations of the original algorithms, making them more suitable for deployment on embedded and mobile devices and providing a more effective means for the practical application of hand gesture recognition technology.


Subject(s)
Endrin/analogs & derivatives , Gestures , Pattern Recognition, Automated , Algorithms , Neural Networks, Computer
19.
BMC Med ; 22(1): 92, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433204

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental disorders with overlapping behavioral features and genetic etiology. While brain cortical thickness (CTh) alterations have been reported in ASD and ADHD separately, the degree to which ASD and ADHD are associated with common and distinct patterns of CTh changes is unclear. METHODS: We searched PubMed, Web of Science, Embase, and Science Direct from inception to 8 December 2023 and included studies of cortical thickness comparing youth (age less than 18) with ASD or ADHD with typically developing controls (TDC). We conducted a comparative meta-analysis of vertex-based studies to identify common and distinct CTh alterations in ASD and ADHD. RESULTS: Twelve ASD datasets involving 458 individuals with ASD and 10 ADHD datasets involving 383 individuals with ADHD were included in the analysis. Compared to TDC, ASD showed increased CTh in bilateral superior frontal gyrus, left middle temporal gyrus, and right superior parietal lobule (SPL) and decreased CTh in right temporoparietal junction (TPJ). ADHD showed decreased CTh in bilateral precentral gyri, right postcentral gyrus, and right TPJ relative to TDC. Conjunction analysis showed both disorders shared reduced TPJ CTh located in default mode network (DMN). Comparative analyses indicated ASD had greater CTh in right SPL and TPJ located in dorsal attention network and thinner CTh in right TPJ located in ventral attention network than ADHD. CONCLUSIONS: These results suggest shared thinner TPJ located in DMN is an overlapping neurobiological feature of ASD and ADHD. This alteration together with SPL alterations might be related to altered biological motion processing in ASD, while abnormalities in sensorimotor systems may contribute to behavioral control problems in ADHD. The disorder-specific thinner TPJ located in disparate attention networks provides novel insight into distinct symptoms of attentional deficits associated with the two neurodevelopmental disorders. TRIAL REGISTRATION: PROSPERO CRD42022370620. Registered on November 9, 2022.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Neurodevelopmental Disorders , Humans , Adolescent , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Autism Spectrum Disorder/diagnostic imaging , Neurobiology
20.
J Psychol ; 158(5): 347-367, 2024.
Article in English | MEDLINE | ID: mdl-38411967

ABSTRACT

According to the humility-helping hypothesis, the question of whether humility affects altruistic behavior has received extensive attention. However, researchers have not established many links between humility and international altruism. The study explored humility as a stable personality trait and assessed whether it encouraged international altruism. It also examined the underlying mechanism between the foregoing relationship. We recruited 940 college students aged 18-23 to participate in an anonymous online survey and obtained 929 data points. The results showed that humility has a direct impact on international altruism. They largely supported the theoretical framework of the humility-helping hypothesis on the inter-group level. We also addressed the mediating effect that identification with all humanity had in the relationship between humility and international altruism. The findings showed that two forms of empathy (empathy and group empathy) have a moderating effect, indicating that different forms of empathy should be more emphasized in different social situations. Taken together, the results show that developing people's humility and helping them to identify with all humanity are key to promoting inter-group altruism, especially for those who can empathize with other people or groups.


Subject(s)
Altruism , Empathy , Humans , Male , Young Adult , Female , Adolescent , Adult , Personality/physiology , Models, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...