Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; : 135882, 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39317284

ABSTRACT

The facile preparation of sustainable sulfur-containing polymer functional materials has been obtained great attention due to their chemical reactivity and metal complexing ability. In this study, taking the solution properties advantages of the newly developed cellulose solvent system of DBU/DMSO/CO2, thiol and disulfide bond functionalized cellulose ester (TDSCE) was facilely prepared via in-situ tandem transesterification and oxidation reaction by using methyl 3-mercaptopropionate, without adding any external catalyst. The synthetic protocol was featured by that the DBU not only acted as reagent for the dissolution of cellulose, but also catalysts for the transesterification of cellulose with methyl 3-mercaptopropionate to yield cellulose 3-mercaptopropionate (Cell-MP) with maximum degrees of substitution (DS) of 0.77, and an oxidant for the partial oxidation of Cell-MP to produce a cellulose methyl 3,3'-disulfanediyldipropionate (Cell-MDSP) with maximum DS of 0.36 mixed ester, respectively. With successful introduction of thiol and disulfide bond into the cellulose backbone, the TDSCEs indicated desirable selective absorption of Au3+ from mimic heavy mental ions waste water due to the sulfur-Au chemistry with maximal adsorption capacity for Au3+ of 415.2 mg/g. The subsequent reduction of Au3+ into gold nanoparticles (Au NPs) fabricated a robust TDSCE-2@Au NPs composite catalyst with high catalytic activity for the hydrogenation treatment of water pollutes, such as 4-nitrophenol (4-NP)and azo dyes.

2.
FEBS Lett ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056365

ABSTRACT

Macroautophagy involves the encapsulation of cellular components within double-membrane autophagosomes for subsequent degradation in vacuoles or lysosomes. Coat protein complex II (COPII) vesicles serve as a membrane source for autophagosome formation. However, the specific role of SEC24D, an isoform of the COPII coat protein SEC24, in the macroautophagy pathway remains unclear. In this study, we demonstrate that SEC24D is indispensable for macroautophagy and important for autophagosome closure. Depletion of SEC24D leads to the accumulation of unsealed isolation membranes. Furthermore, under conditions of starvation, SEC24D interacts with casein kinase1 delta (CK1δ), a member of the casein kinase 1 family, and autophagy-related 9A (ATG9A). Collectively, our findings unveil the indispensable role of SEC24D in starvation-induced autophagy in mammalian cells.

3.
Adv Sci (Weinh) ; 11(30): e2403551, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38868953

ABSTRACT

With the onset of the 5G era, wearable flexible electronic devices have developed rapidly and gradually entered the daily life of people. However, the vast majority of research focuses on the integration of functions and performance improvement, while ignoring electromagnetic hazards caused by devices. Herein, the 3D double conductive networks are constructed through a repetitive vacuum-assisted dip-coating technique to decorate the 2D MXene and 1D silver nanowires on the melamine foam. Benefiting from the unique porous structure and multi-scale interconnected frame, the resultant composite foam exhibited high electrical conductivity, low density, superb electromagnetic interference shielding (48.32 dB), and Joule heating performance (up to 90.8 °C under 0.8 V). Furthermore, a single-electrode triboelectric nanogenerator (TENG) with powerful energy harvesting capability is assembled by combining the composite foam with an ultra-thin Ecoflex film and a polyvinylidene fluoride film. Simultaneously, the foam-based TENG can also be considered a reliable wearable sensor for monitoring activity patterns in different parts of the human body. The versatility and scalable manufacturing of high-performance composite foams will provide new design ideas for the development of next-generation flexible wearable devices.

4.
Klin Monbl Augenheilkd ; 241(9): 1062-1070, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38688324

ABSTRACT

This study aims to explore the associations and the underlying mechanism among dry eye disease (DED), air pollution, and meteorological conditions. DED is positively correlated with air pollutants (i.e., PM2.5, PM10, O3, NO2, CO, and SO2) and meteorological conditions (i.e., high altitude and wind speed), while negatively associated with relative humidity. Both low and high air temperatures effect DED. Atmospheric pollutants affect DED mainly through necroptosis or autophagy, inflammatory responses, and oxidative stress. Meteorological factors affect DED not only by their own affects but also by dispersing the concentration of air pollutants, and then reducing the negative exposure. In summary, this review may expand the understanding of the effects of air pollution and meteorological factors on DED and emphasize the importance of air environmental protection.


Subject(s)
Air Pollutants , Air Pollution , Dry Eye Syndromes , Humans , Air Pollution/adverse effects , Air Pollutants/adverse effects , Dry Eye Syndromes/etiology , Meteorological Concepts , Environmental Exposure/adverse effects , Oxidative Stress , Risk Factors , Humidity , Particulate Matter/adverse effects , Weather
5.
Zootaxa ; 5380(3): 295-300, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38221309

ABSTRACT

In this work, a new species of the genus Falsotrachystola Breuning, 1950 (Cerambycidae: Lamiinae) is described and illustrated, namely Falsotrachystola xui sp. nov. from Guangxi Zhuang Autonomous Region and Guizhou province, China.


Subject(s)
Coleoptera , Animals , China , Animal Structures , Body Size , Organ Size
SELECTION OF CITATIONS
SEARCH DETAIL