Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters











Publication year range
1.
Food Chem ; 463(Pt 1): 141177, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39260170

ABSTRACT

Gastrodia elata Blume (G. elata) is a traditional medicinal and edible plant whose quality is significantly influenced by post-harvest processing. To obtain an optimal post-harvest processing method for G. elata, this study employed sensory evaluation, scanning electron microscopy (SEM), gas chromatography-ion mobility spectrometry (GC-IMS), and non-targeted metabolomics, in conjunction with an in vitro digestion model, to assess the impact of different processing and drying methods on the quality of G. elata. The findings showed that the steam treatment followed by heat pump drying resulted in the highest levels of total phenols, total flavonoids, and polysaccharides in G. elata, and caused more pronounced damage to its microstructure. This treatment also maintained the highest antioxidant activities and optimal acetylcholinesterase (AChE) inhibition capacity throughout in vitro digestion, meanwhile, effectively eliminating the unpleasant odor and achieving the highest sensory scores. Furthermore, non-targeted metabolomic analysis revealed noteworthy alterations in the metabolite profile of G. elata, mainly related to purine metabolism and the biosynthesis of amino acids pathways. This study provides valuable insights into the post-harvest processing of G. elata.

2.
Front Microbiol ; 15: 1424633, 2024.
Article in English | MEDLINE | ID: mdl-39091303

ABSTRACT

The microbial communities in rhizosphere soil play important roles in plant health and crop productivity. However, the microbial community structure of rhizosphere soil still remains unclear. In this study, the composition, diversity and function of the microbial communities in the rhizosphere soil of healthy and diseased plants were compared using Illumina MiSeq high-throughput sequencing. The Sobs (richness) and Shannon (diversity) indices of the soil microbial communities were higher in the rhizospheres of 2- and 3-year-old susceptible plants than in those of the healthy plants. With the increase in planting time, the numbers of fungi tended to decrease, while those of the bacteria tended to increase. Fungal diversity could be used as a biological indicator to measure the health of Knoxia roxburghii. The microbial composition and differential analyses revealed that the rhizosphere soil infested with fungi had a higher relative abundance at the phylum level in Ascomycota and Basidiomycota, while the bacteria had a higher relative abundance of Chloroflexi and a lower relative abundance of Actinobacteriota. At the genus level, the rhizosphere soil infested with fungi had relatively more abundant unclassified_f__Didymellaceae and Solicoccozyma and relatively less abundant Saitozyma and Penicillium. The bacterial genus norank_f__Gemmatimonadaceae was the most abundant, while Arthrobacter was less abundant. In addition, the abundance of Fusarium in the fungal community varied (p = 0.001). It tended to increase in parallel with the planting years. Therefore, it was hypothesized that the change in the community composition of Fusarium may be the primary reason for the occurrence of root rot in K. roxburghii, and the change in the abundance of Fusarium OTU1450 may be an indication of the occurrence of root rot in this species. The community function and prediction analyses showed that the pathogenic fungi increased with the increase in planting years. In general, soil fungi can be roughly divided into three types, including pathotrophs, symbiotrophs, and saprotrophs. An analysis of the differences in the prediction of different rhizosphere functions showed that D and L were significantly different in the COG enrichment pathway of the K. roxburghii rhizosphere bacteria (p < 0.05). The soil physical and chemical properties, including the pH, AK, total potassium (TK), and catalase (S_CAT), had the most significant effect on the soil fungal community, and most of the soil physical and chemical properties significantly correlated with the bacterial community. This study demonstrated that the occurrence of root rot had an important effect on the diversity, structure and composition of microbial communities. In addition, the results will provide a theoretical basis to prevent and control root rot in K. roxburghii.

3.
Curr Biol ; 34(17): 3983-3995.e6, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39146939

ABSTRACT

Plants have powerful defense mechanisms and extensive immune receptor repertoires, yet crop monocultures are prone to epidemic diseases. Rice (Oryza sativa) is susceptible to many diseases, such as rice blast caused by Magnaporthe oryzae. Varietal resistance of rice to blast relies on intracellular nucleotide binding, leucine-rich repeat (NLR) receptors that recognize specific pathogen molecules and trigger immune responses. In the Yuanyang terraces in southwest China, rice landraces rarely show severe losses to disease whereas commercial inbred lines show pronounced field susceptibility. Here, we investigate within-landrace NLR sequence diversity of nine rice landraces and eleven modern varieties using complexity reduction techniques. We find that NLRs display high sequence diversity in landraces, consistent with balancing selection, and that balancing selection at NLRs is more pervasive in landraces than modern varieties. Notably, modern varieties lack many ancient NLR haplotypes that are retained in some landraces. Our study emphasizes the value of standing genetic variation that is maintained in farmer landraces as a resource to make modern crops and agroecosystems less prone to disease. The conservation of landraces is, therefore, crucial for ensuring food security in the face of dynamic biotic and abiotic threats.


Subject(s)
Disease Resistance , Genetic Variation , Oryza , Plant Diseases , Oryza/genetics , Oryza/immunology , Oryza/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , NLR Proteins/genetics , NLR Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , China , Haplotypes , Ascomycota
4.
Sci Rep ; 14(1): 17816, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090225

ABSTRACT

Humic acid (HA) can substantially enhance plant growth and improve soil health. Currently, the impacts of HA concentrations variation on the development and soil quality of Panax notoginseng (Sanqi) from the forest understorey are still unclear. In this study, exogenous HA was administered to the roots of Sanqi at varying concentrations (2, 4, and 6 ml/L). Subsequently, the diversity and community structure of bacteria and fungi were assessed through high-throughput sequencing technology. The investigation further involved analyzing the interplay among the growth of sanqi, soil edaphic factors, and the microbial network stability. Our finding revealed that moderate concentrations (4 ml/L) of HA improved the fresh/dry weight of Sanqi and NO3--N levels. Compared with control, the moderate concentrations of HA had a notable impact on the bacterial and fungal communities compositions. However, there was no significant difference in the α and ß diversity of bacteria and fungi. Moreover, the abundance of beneficial bacteria (Bradyrhizobium) and harmful bacteria (Xanthobacteraceae) increased and decreased at 4 ml/L HA, respectively, while the bacterial and fungal network stability were enhanced. Structural equation model (SEM) revealed that the fresh weight of Sanqi and bacterial and fungal communities were the factors that directly affected the microbial network stability at moderate concentrations of HA. In conclusion, 4 ml/L of HA is beneficial for promoting Sanqi growth and soil quality. Our study provides a reference for increasing the yield of Sanqi and sustainable development of the Sanqi-pine agroforestry system.


Subject(s)
Fertilizers , Forests , Fungi , Humic Substances , Panax notoginseng , Soil Microbiology , Panax notoginseng/growth & development , Humic Substances/analysis , Fertilizers/analysis , Fungi/growth & development , Fungi/drug effects , Bacteria/growth & development , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Plant Roots/growth & development , Plant Roots/microbiology , Soil/chemistry , Microbiota/drug effects
5.
RSC Adv ; 14(32): 23204-23214, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39045398

ABSTRACT

Medicinal plants, increasingly utilized in functional foods, possess potent therapeutic properties and health-promoting functions, with carbohydrates playing a crucial role and exhibiting a range of effects, such as antioxidant, antitumor, immune-enhancing, antibacterial, anticoagulant, and hypoglycemic activities. However, comprehensively, accurately, rapidly, and economically assessing the quality of carbohydrate components is challenging due to their diverse and complex nature. Additionally, the purification and identification of carbohydrates also guarantee related efficacy research. This paper offers a thorough review of research progress carried out by both domestic and international scholars in the last decade on extracting, purifying, separating, identifying, and determining the content of carbohydrate components from functional foods, which are mainly composed of medicinal plants, and also explores the potential for achieving comprehensive quantitative analysis and evaluating structure-activity relationships of carbohydrate components. These findings aim to serve as a valuable reference for the future development and application of natural carbohydrate components in functional food and medicine.

6.
BMC Microbiol ; 24(1): 195, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849736

ABSTRACT

BACKGROUND: Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS: The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS: The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.


Subject(s)
Biodiversity , Endophytes , Fungi , Plant Roots , Rhizosphere , Soil Microbiology , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Plant Roots/microbiology , DNA, Fungal/genetics , High-Throughput Nucleotide Sequencing , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/classification , Ascomycota/growth & development , Ascomycota/isolation & purification , Phylogeny , Mycobiome
7.
BMC Genom Data ; 25(1): 59, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877406

ABSTRACT

OBJECTIVES: Knoxia roxburghii is a member of the madder (Rubiaceae) family. This plant is cultivated in different areas of China and recognized for its medicinal properties, which leads to its use in traditional Chinese medicine. The incidence of root rot was 10-15%. In June 2023, the causal agent of root rot on K. roxburghii was identified as Fusarium oxysporum. To the best of our knowledge, this is the first report of the complete genome of F. oxysporum strain ByF01 that is the causal agent of root rot of K. roxburghii in China. The results will provide effective resources for pathogenesis on K. roxburghii and the prevention and control of root rot on this host in the future. DATA DESCRIPTION: To understand the molecular mechanisms used by F. oxysporum to cause root rot on K. roxburghii, strain ByF01 was isolated from diseased roots and identified by morphological and molecular methods. The complete genome of strain ByF01 was then sequenced using a combination of the PacBio Sequel IIe and Illumina sequencing platforms. We obtained 54,431,725 bp of nucleotides, 47.46% GC content, and 16,705 coding sequences.


Subject(s)
Fusarium , Genome, Fungal , Plant Diseases , Plant Roots , Fusarium/genetics , Fusarium/isolation & purification , Fusarium/pathogenicity , Plant Diseases/microbiology , Plant Roots/microbiology , China , Genome, Fungal/genetics , Rubiaceae/microbiology , Whole Genome Sequencing , Phylogeny
8.
Plants (Basel) ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891250

ABSTRACT

Panax notoginseng is a perennial plant well known for its versatile medicinal properties, including hepatoprotective, antioxidant, anti-inflammatory, anti-tumor, estrogen-like, and antidepressant characteristics. It has been reported that plant age affects the quality of P. notoginseng. This study aimed to explore the differential metabolome and transcriptome of 2-year (PN2) and 3-year-old (PN3) P. notoginseng plant root samples. Principal component analysis of metabolome and transcriptome data revealed major differences between the two groups (PN2 vs. PN3). A total of 1813 metabolites and 28,587 genes were detected in this study, of which 255 metabolites and 3141 genes were found to be differential (p < 0.05) between PN2 vs. PN3, respectively. Among differential metabolites and genes, 155 metabolites and 1217 genes were up-regulated, while 100 metabolites and 1924 genes were down-regulated. The KEGG pathway analysis revealed differentially enriched metabolites belonging to class lipids ("13S-hydroperoxy-9Z, 11E-octadecadionic acid", "9S-hydroxy-10E, 12Z-octadecadionic acid", "9S-oxo-10E, 12Z-octadecadionic acid", and "9,10,13-trihydroxy-11-octadecadionic acid"), nucleotides and derivatives (guanine and cytidine), and phenolic acids (chlorogenic acid) were found to be enriched (p < 0.05) in PN3 compared to PN2. Further, these differentially enriched metabolites were found to be significantly (p < 0.05) regulated via linoleic acid metabolism, nucleotide metabolism, plant hormone signal transduction, and arachidonic acid metabolism pathways. Furthermore, the transcriptome analysis showed the up-regulation of key genes MAT, DMAS, SDH, gallate 1-beta-glucosyltransferase, and beta-D-glucosidase in various plants' secondary metabolic pathways and SAUR, GID1, PP2C, ETR, CTR1, EBF1/2, and ERF1/2 genes observed in phytohormone signal transduction pathway that is involved in plant growth and development, and protection against the various stressors. This study concluded that the roots of a 3-year-old P. notoginseng plant have better metabolome and transcriptome profiles compared to a 2-year-old plant with importantly enriched metabolites and genes in pathways related to metabolism, plant hormone signal transduction, and various biological processes. These findings provide insights into the plant's dynamic biochemical and molecular changes during its growth that have several implications regarding its therapeutic use.

9.
Article in English | MEDLINE | ID: mdl-38767616

ABSTRACT

A Gram-stain-positive actinomycete, designated REN17T, was isolated from fermented grains of Baijiu collected from Sichuan, PR China. It exhibited branched substrate mycelia and a sparse aerial mycelium. The optimal growth conditions for REN17T were determined to be 28 °C and pH 7, with a NaCl concentration of 0 % (w/v). ll-Diaminopimelic acid was the diagnostic amino acid of the cell-wall peptidoglycan and the polar lipids were composed of phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid, two unidentified lipids and four unidentified glycolipids. The predominant menaquinone was MK-9 (H2), MK-9 (H4), MK-9 (H6) and MK-9 (H8). The major fatty acids were iso-C16 : 0. The 16S rRNA sequence of REN17T was most closely related to those of Streptomyces apricus SUN 51T (99.8 %), Streptomyces liliiviolaceus BH-SS-21T (99.6 %) and Streptomyces umbirnus JCM 4521T (98.9 %). The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identify values between REN17T and its closest replated strain, of S. apricus SUN 51T, were 35.9, 88.9 and 87.3 %, respectively. Therefore, REN17T represents a novel species within the genus Streptomyces, for which the name Streptomyces beigongshangae sp. nov. is proposed. The type strain is REN17T (=GDMCC 4.193T=JCM 34712T). While exploring the function of the strain, REN17T was found to possess the ability to transform major ginsenosides of Panax notoginseng (Burk.) F.H. Chen (Araliaceae) into minor ginsenoside through HPLC separation, which was due to the presence of ß-glucosidase. The recombinant ß-glucosidase was constructed and purified, which could produce minor ginsenosides of Rg3 and C-K. Finally, the enzymatic properties were characterized.


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Fatty Acids , Fermentation , Ginsenosides , Nucleic Acid Hybridization , Panax notoginseng , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Streptomyces , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Streptomyces/isolation & purification , Streptomyces/genetics , Streptomyces/classification , Vitamin K 2/analogs & derivatives , DNA, Bacterial/genetics , China , Panax notoginseng/microbiology , Ginsenosides/metabolism , Peptidoglycan , Edible Grain/microbiology , Diaminopimelic Acid , Phospholipids/chemistry , Base Composition
10.
Chin Herb Med ; 16(2): 214-226, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38706830

ABSTRACT

Objective: Paris polyphylla var. yunnanensis, one of the important medicinal plant resources in Yunnan, China, usually takes 6-8 years to be harvested. Therefore, it is urgent to find a method that can not only shorten its growth years, but also improve its quality. In this study, we examined the effects of a combination treatment of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting endophytes (PGPE) and drought stress on the accumulation of saponins in it. Methods: P. polyphylla var. yunnanensis was infected with a mixture of AMF and PGPE under drought stress. The content of saponins, as well as morphological, physiological, and biochemical indicators, were all measured. The UGTs gene related to saponin synthesis was obtained from transcriptome data by homologous comparison, which were used for RT-PCR and phylogenetic analysis. Results: Regardless of water, AMF treatment could infect the roots of P. polyphylla var. yunnanensis, however double inoculation with AMF and PGPE (AMF + PGPE) would reduce the infection rate of AMF. Plant height, aboveground and underground fresh weight did not differ significantly between the single inoculation AMF and the double inoculation treatment under different water conditions, but the inoculation treatment significantly increased the plant height of P. polyphylla var. yunnanensis compared to the non-inoculation treatment. Single inoculation with AMF considerably increased the net photosynthetic rate, stomatal conductance, and transpiration rate of P. polyphylla var. yunnanensis leaves under various water conditions, but double inoculation with AMF + PGPE greatly increased the intercellular CO2 concentration and chlorophyll fluorescence parameter (Fv/Fm). Under diverse water treatments, single inoculation AMF had the highest proline content, whereas double inoculation AMF + PGPE may greatly improve the amount of abscisic acid (ABA) and indoleacetic acid (IAA) compared to normal water under moderate drought. Double inoculation AMF + PGPE treatment improved the proportion of N, P, and K in the rhizome of P. polyphylla var. yunnanensis under various water conditions. Under moderate drought stress, AMF + PGPE significantly enhanced the contents of P. polyphylla var. yunnanensis saponins I, II, VII, and total saponins as compared to normal water circumstances. Farnesyl diphosphate synthase (FPPS), Geranyl pyrophosphate synthase (GPPS), Cycloartenol synthase (CAS), and Squalene epoxidase (SE1) were the genes that were significantly up-regulated at the same time. The amount of saponins was favorably linked with the expression of CAS, GPPS, and SE1. Saponin VI content and glycosyl transferase (UGT) 010922 gene expression were found to be substantially associated, as was saponin II content and UGT010935 gene expression. Conclusion: Under moderate drought, AMF + PGPE was more conducive to the increase of hormone content, nutrient absorption, and total saponin content in P. polyphylla var. yunnanensis, and AMF + PGPE could up regulate the expression of key genes and UGTs genes in one or more steroidal saponin synthesis pathways to varying degrees, thereby stimulating the synthesis and accumulation of steroidal saponins in the rhizome of P. polyphylla var. yunnanensis. The combination of AMF and PGPE inoculation, as well as adequate soil drought, reduced the buildup of saponins in P. polyphylla var. yunnanensis and increased its quality.

11.
PLoS One ; 19(4): e0294394, 2024.
Article in English | MEDLINE | ID: mdl-38635811

ABSTRACT

Drought stress (DS) is one of the important abiotic stresses facing cash crops today. Drought can reduce plant growth and development, inhibit photosynthesis, and thus reduce plant yield. In this experiment, we investigated the protective mechanism of AMF on plant photosynthetic system by inoculating Paris polyphylla var. yunnanensis(P.py) with a clumping mycorrhizal fungus (AMF) under drought conditions. The drought environment was maintained by weighing AMF plants and non-AMF plants. The relative water content (RWC) of plant leaves was measured to determine its drought effect. DS decreased the RWC of plants, but AMF was able to increase the RWC of plants. chlorophyll a fluorescence curve measurements revealed that DS increased the OKJIP curve of plants, but AMF was able to reduce this trend, indicating that AMF increased the light absorption capacity of plants. DS also caused a decrease in plant Y(I) and Y(II). ETRI and ETRII, and increased Y(NO) and Y(NA) in plants, indicating that DS caused photosystem damage in plants. For the same host, different AMFs did not help to the same extent, but all AMFs were able to help plants reduce this damage and contribute to the increase of plant photosynthesis under normal water conditions.


Subject(s)
Liliaceae , Mycorrhizae , Chlorophyll A , Droughts , Water
12.
Nat Commun ; 15(1): 3437, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653755

ABSTRACT

Phytoalexin sakuranetin functions in resistance against rice blast. However, the mechanisms underlying the effects of sakuranetin remains elusive. Here, we report that rice lines expressing resistance (R) genes were found to contain high levels of sakuranetin, which correlates with attenuated endocytic trafficking of plasma membrane (PM) proteins. Exogenous and endogenous sakuranetin attenuates the endocytosis of various PM proteins and the fungal effector PWL2. Moreover, accumulation of the avirulence protein AvrCO39, resulting from uptake into rice cells by Magnaporthe oryzae, was reduced following treatment with sakuranetin. Pharmacological manipulation of clathrin-mediated endocytic (CME) suggests that this pathway is targeted by sakuranetin. Indeed, attenuation of CME by sakuranetin is sufficient to convey resistance against rice blast. Our data reveals a mechanism of rice against M. oryzae by increasing sakuranetin levels and repressing the CME of pathogen effectors, which is distinct from the action of many R genes that mainly function by modulating transcription.


Subject(s)
Ascomycota , Disease Resistance , Endocytosis , Flavonoids , Oryza , Phytoalexins , Plant Diseases , Plant Proteins , Oryza/microbiology , Oryza/metabolism , Oryza/drug effects , Oryza/genetics , Plant Diseases/microbiology , Endocytosis/drug effects , Disease Resistance/genetics , Disease Resistance/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Sesquiterpenes/pharmacology , Sesquiterpenes/metabolism , Gene Expression Regulation, Plant/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects , Plants, Genetically Modified , Fungal Proteins/metabolism , Fungal Proteins/genetics
13.
J Agric Food Chem ; 72(14): 7586-7595, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38530921

ABSTRACT

Comprehending the structure and function of rhizobacteria components and their regulation are crucial for sustainable agricultural management. However, obtaining comprehensive species information for most bacteria in the natural environment, particularly rhizobacteria, presents a challenge using traditional culture methods. To obtain diverse and pure cultures of rhizobacteria, this study primarily reviews the evolution of rhizobacteria culturomics and associated culture methods. Furthermore, it explores new strategies for enhancing the application of culturomics, providing valuable insights into efficiently enriching and isolate target bacterial strains/groups from the environment. The findings will help improve rhizobacteria's culturability and enrich the functional bacterial library.


Subject(s)
Alphaproteobacteria , Bacteria , Agriculture
14.
Plant Dis ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468138

ABSTRACT

Bletilla striata Rchb.f., is a perennial herbaceous bulbous plant known as the Chinese ground or hyacinth orchid classified in the Orchidaceae. It is native to southeast Asia and mainly distributed in China, Japan and northern Myanmar (He et al. 2017). It has the functions of astringent hemostasis and analgesia, and can also be used to treat traumatic bleeding, ulcers, swelling and chapped skin. Therefore, it occupies an important position in traditional Chinese medicine (Xu et al. 2019). In June 2023, three farmers in Mengzi (103.39°N, 23.21°E), Yunnan Province, China, observed that some Bletilla striata Rchb.f. plants grew poorly with small and chlorotic leaves (Figure 1 A). We suspected that these symptoms were caused by root-knot nematode infection, but the galls on the roots were small and inconspicuous (Figure 1 A). The presence of nematode females in both the galled regions and the normal roots (Figure 1 B), revealed by fuchsin staining (Byrd et al. 1983), indicated that the symptoms were probably caused by root-knot nematode infection. To estimate the incidence rates, we randomly selected 100 B. striata Rchb.f. plants from each of five fields representing a total area of 3000 m2. In these fields, the occurrence of stained root-knot nematodes were 19.3%, 17%, 18.3%, 15%, and 13%, respectively. The gall rating of the infected plants in the B striata Rchb.f. samples collected from the five fields was 2 (rating scale of 0 to 5). Females (n=20), second-stage juveniles (J2s, n=20) and egg masses (n=20) were extracted and collected from roots and soil for morphological and molecular identification. The females had a white, pyriform body and their perineal patterns exhibited a high and square dorsal arch, lacking distinct lateral line (Figure 1. C & D). Measurements of females (n = 20) were: body length (BL) = 708.64±89.6 µm (554.36 to 844.51 µm); maximum body width (BW) = 461.73±47.44 µm (365.25 to 561.49 µm); stylet length (ST) = 15.49±3.15 µm (10.55 to 19.78 µm); and distance from dorsal esophageal gland opening to the stylet knobs (DGO) = 3.33±0.27 µm (2.77 to 3.93 µm). Measurements of J2s (n=20) were BL = 417.7±47.67 µm (342.16 to 499.68 µm); BW = 15.74±2.66 µm (11.05 to 25.63 µm); ST = 12.49±1.12 µm (10.19 to 15.02 µm); DGO = 2.64±0.59 µm (40.17 to 68.74 µm); tail length = 51.93±8.55 µm (10.43 to 27.22 µm); hyaline tail terminus = 18.23±3.99 µm (1.48 to 3.98 µm). These morphological features match the description of Meloidogyne incognita (Eisenback et al. 1981). To further confirm the species, we selected three infected plants from each field for molecular identification, the ITS region amplified using the primers 18S/26S (5'-TTGATTACGTCCCTGCCCTTT-3',5'-TTTCACTCGCCGTTACTAAGG-3') (Vrain et al. 1992) . A 729 bp PCR product of ITS region (accession nos. OR463907) was obtained from all infected plants. The amplicons from 18S/26S primer pair were sequenced and the sequences showed 95.29% homology with sequences of M. incognita (accession nos. MT209948.1). Moreover, a 835 bp DNA fragment (accession nos. OR469000) was obtained using the specific primers Mi-F/Mi-R (5'-GTGAGGATTCAGCTCCCCAG-3',5'-ACGAGGAACATACTTCTCCGTCC-3') for M. incognita (Meng et al. 2004), the sequence showed 99.28% homology with sequences of M. incognita (accession nos. ON416569). The morphological features and molecular data confirmed the identification of the root-knot nematode on B. striata Rchb.f. as M. incognita. To confirm the pathogenicity, ten healthy B. striata Rchb.f. seedlings were each inoculated with 500 freshly hatched J2s isolated from field Bletilla striata Rchb.f.. Five healthy seedlings without J2 inoculation were used as controls. At 60 days after inoculation, most of the inoculated plants exhibited similar symptoms to those initially observed by farmers in the field. On average, 1532 J2s were recovered from each inoculated plant, yielding a reproductive factor of 2.1. The gall rating for these inoculated plants was 2. Fuchsin staining revealed the presence of root-knot nematode females within the roots, with an average of 17 females detected per inoculated plant. No symptoms were observed in the control plants. This is the first report of M. incognita infecting B. striata Rchb.f. in China. M. incognita can cause severe infection and damage to some crops, resulting in serious economic losses (Eisenback, 2022). The growers need to take measures to prevent the spread of this nematode.

15.
ACS Appl Mater Interfaces ; 16(7): 9182-9189, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38343193

ABSTRACT

Carbon dots (CDs) are new carbon nanomaterials, among which those prepared from biomass are popular due to their excellent optical properties and environmental friendliness. As representative natural phenolic compounds, tea polyphenols are ideal precursors with fluorescent aromatic rings and phenolic hydroxyl structures. Usually, polyphenolic precursors can only be used to produce blue or green fluorescent CDs, and fluorescence in long wavelength domains, such as orange or red, cannot be achieved. Herein, the high reactivity of the phenolic hydroxyl groups in tea polyphenols with o-phthalaldehyde was exploited to modulate the pH during the carbonation process, which led to redshifts of the fluorescence wavelengths. Different pH values during the reaction caused the precursors to take different reaction paths and form fluorescent groups exhibiting different conjugated structures, resulting in carbon dots providing different fluorescent colors. Finally, by utilizing the in situ hydrolysis of ethyl orthosilicate, the tea polyphenol-based carbon dots were embedded into a silica matrix, inducing phosphorescence of the carbon dots. This study provides a new approach for green preparation and application of natural polyphenolic CDs.

16.
J Fungi (Basel) ; 10(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38392817

ABSTRACT

Chimonanthus praecox is an aromatic plant that flowers in winter. The composition of the floral volatiles of C. praecox is influenced by different blooming stages, circadian rhythms and species. However, the relationship between floral volatiles and plant endophytic fungi has not received much research attention. Here, we used high-throughput sequencing technology to compare and analyze the changes in the structure and diversity of the endophytic fungal communities in C. praecox under different circadian rhythms (7:00 a.m., 1:00 p.m., and 7:00 p.m.) and in different blooming stages (unopened flowers and opened flowers). The endophytic fungi of C. praecox consisted of nine phyla, 34 classes, 79 orders, 181 families, 293 genera, and 397 species, and Ascomycota was the dominant phylum. Under a diurnal rhythm, the diversity (Chao1 and Shannon indices) of endophytic fungi gradually decreased in the unopened flowers, while an increasing and then decreasing trend was found for the opened flowers. In the different blooming stages, the endophytic fungal diversity was significantly higher at 7:00 a.m. in the unopened flowers compared to the opened flowers. Humidity was the key factors that significantly affected the endophytic fungal diversity and community. Moreover, 11 endophytic fungi were significantly positively or negatively correlated with seven floral volatiles. In conclusion, the community structure and diversity of endophytic fungi in C. praecox were affected by the different blooming stages and circadian rhythms, and a correlation effect related to floral volatiles was found, but there are other possible reasons that were not tested. This study provides a theoretical basis for elucidating the interrelationships between endophytic fungi, floral volatiles, and environmental factors in C. praecox.

17.
Nat Commun ; 15(1): 602, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238334

ABSTRACT

Plants usually produce defence metabolites in non-active forms to minimize the risk of harm to themselves and spatiotemporally activate these defence metabolites upon pathogen attack. This so-called two-component system plays a decisive role in the chemical defence of various plants. Here, we discovered that Panax notoginseng, a valuable medicinal plant, has evolved a two-component chemical defence system composed of a chloroplast-localized ß-glucosidase, denominated PnGH1, and its substrates 20(S)-protopanaxadiol ginsenosides. The ß-glucosidase and its substrates are spatially separated in cells under physiological conditions, and ginsenoside hydrolysis is therefore activated only upon chloroplast disruption, which is caused by the induced exoenzymes of pathogenic fungi upon exposure to plant leaves. This activation of PnGH1-mediated hydrolysis results in the production of a series of less-polar ginsenosides by selective hydrolysis of an outer glucose at the C-3 site, with a broader spectrum and more potent antifungal activity in vitro and in vivo than the precursor molecules. Furthermore, such ß-glucosidase-mediated hydrolysis upon fungal infection was also found in the congeneric species P. quinquefolium and P. ginseng. Our findings reveal a two-component chemical defence system in Panax species and offer insights for developing botanical pesticides for disease management in Panax species.


Subject(s)
Ginsenosides , Panax , Plants, Medicinal , Ginsenosides/pharmacology , Ginsenosides/chemistry , Panax/chemistry , Panax/metabolism , beta-Glucosidase/metabolism , Plants, Medicinal/metabolism , Plant Extracts/chemistry
19.
Fitoterapia ; 172: 105762, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040095

ABSTRACT

Six undescribed guaianolide sesquiterpenes (1-6) were obtained from the aerial parts of Daphne penicillata. Their structures and absolute configuration were elucidated by HRESIMS, NMR analyses, ECD calculations and single-crystal X-ray diffraction analysis. Structurally, all compounds possess the typical 5,7-fused system of 8,12-guaianolides and this guaianolide-type was first reported to be isolated from Daphne penicillata. All compounds (1-6) were evaluated for anti-inflammatory and cytotoxic activity. Among them, compounds 1 and 5 showed moderate inhibitory effects on LPS-induced NO production in BV2 cells and 4 displayed potential inhibition against Hep3B cells with an IC50 value of 7.33 µM.


Subject(s)
Daphne , Sesquiterpenes , Molecular Structure , Sesquiterpenes, Guaiane/pharmacology , Sesquiterpenes/chemistry , Plant Components, Aerial/chemistry
20.
Phytochemistry ; 218: 113950, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101591

ABSTRACT

Eight structurally diverse rearranged sesquiterpenoids, including seven undescribed sesquiterpenoids (1a/1b and 3-8) were obtained from the aerial parts of Daphne penicillata. 1a/1b, 3, 5 and 6 possess rare rearranged guaiane skeletons and 4 represents the first example of rearranged carotene sesquiterpenoids. Their structures and absolute configurations were determined by extensive spectroscopic analyses, NMR and ECD calculations. Interestingly, 1a and 1b were a pair of magical interconverting epimers that may interconvert by retro-aldol condensation. The mechanism of interconversion has been demonstrated indirectly by 9-OH derivatization of 1a/1b and a hypothetical biogenetic pathway was proposed. All compounds were evaluated for anti-inflammatory and cytotoxic activities. Among them, 1a/1b and 2 exhibited potential inhibitory activities on the production of NO against LPS-induced BV2 microglial cells.


Subject(s)
Daphne , Sesquiterpenes , Daphne/chemistry , Molecular Structure , Isomerism , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Plant Components, Aerial
SELECTION OF CITATIONS
SEARCH DETAIL