Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 427
Filter
1.
J Colloid Interface Sci ; 677(Pt A): 941-952, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39128288

ABSTRACT

Prodrug nanoassemblies combine the advantages of prodrug strategies and nanotechnology have been widely utilized for delivering antitumor drugs. These prodrugs typically comprise active drug modules, response modules, and modification modules. Among them, the modification modules play a critical factor in improving the self-assembly ability of the parent drug. However, the impact of the specific structure of the modification modules on prodrug self-assembly remains elusive. In this study, two gemcitabine (GEM) prodrugs are developed using 2-octyl-1-dodecanol (OD) as flexible modification modules and cholesterol (CLS) as rigid modification modules. Interestingly, the differences in the chemical structure of modification modules significantly affect the assembly performance, drug release, cytotoxicity, tumor accumulation, and antitumor efficacy of prodrug nanoassemblies. It is noteworthy that the prodrug nanoassemblies constructed with flexible modifying chains (OD) exhibit improved stability, faster drug release, and enhanced antitumor effects. Our findings elucidate the significant impact of modification modules on the construction of prodrug nanoassemblies.


Subject(s)
Deoxycytidine , Drug Liberation , Gemcitabine , Prodrugs , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Humans , Animals , Mice , Drug Screening Assays, Antitumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Nanoparticles/chemistry , Cell Proliferation/drug effects , Particle Size , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , Molecular Structure , Surface Properties , Mice, Inbred BALB C
2.
J Colloid Interface Sci ; 678(Pt C): 24-34, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39277950

ABSTRACT

Small molecule prodrugs self-assembled nano-delivery systems with tumor responsive linkages are emerging as an effective platform. However, the heterogeneity of tumor microenvironment may limit the anti-tumor effect of prodrug nanomedicines with a single response module. Here, we chose disulfide bond as the response module and branched chain alcohol as the self-assembly modification module to construct a single-responsive prodrug. We also constructed a double-responsive paclitaxel prodrug combining triglyceride and disulfide bond, taking into account of the highly expressed lipase and glutathione levels in tumor cells. The results showed that the anti-tumor effect of single-responsive branched chain alcohol modified prodrug nanoparticles was inferior to triglyceride prodrug nanoparticles with dual response modules. The triglyceride structure can not only serve as a self-assembly modification module, but also serve as a response module for intelligent drug release in tumor. Such dual roles will facilitate the efficient delivery of small molecule self-assembled prodrugs to tumor sites.

3.
J Control Release ; 375: 47-59, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39222794

ABSTRACT

In the prodrug-based self-assembled nanoassemblies, prodrugs usually consist of drug modules, response modules, and modification modules. Modification modules play a critical role in regulating the nano-assembly ability of the prodrugs. Herein, we carried out a "fatty alcoholization" strategy and chose various lengths of aliphatic alcohol chains (AC) as modification modules to construct disulfide bond bridged paclitaxel (PTX) prodrug nanoassemblies. The PTX-AC prodrugs would self-assemble into nanoassemblies (PTX-AC PNs) with higher drug loading, stability, and tumor selectivity than commercial preparations. After comprehensive exploration, we found the chain length (AC12, AC16, AC20, AC24) of modification modules affected the assembly of PTX-AC PNs, further leading to disparate in vivo fate and antitumor efficacy. With the increase of the chain length of the modification modules (from AC12 to AC20), the assembly ability of the nanoassemblies was improved, attributed to the appropriate enhancement of hydrophobic force. When the chain length was further increased to AC24, the excessive hydrophobic force will lead to the aggregation of prodrugs and weaken the assembly ability. Therefore, PTX-AC20 PNs with proper chain length may solve the paradox of efficacy and tolerance in 4 T1 breast tumor owing to their optimal nano-assembly stability and modest redox-sensitivity. In short, this work highlighted the importance of screening optimal modification modules in developing prodrug nanoassemblies.

4.
J Colloid Interface Sci ; 678(Pt C): 272-282, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39298978

ABSTRACT

Cancer immunotherapy has emerged as a potent treatment strategy by harnessing the host immune system to target cancer cells. However, challenges including low tumor vaccine immunogenicity and tumor heterogeneity hinder its clinical efficacy. To address these issues, we propose a novel nanoplatform integrating photothermal material gold nanorods (GNRs) with polyphenols for enhanced immunotherapy efficacy via photothermal therapy. Polyphenols, natural compounds with phenolic hydroxyl groups, are known for their ability to bind tightly to various molecules, making them ideal for antigen capture. We synthesized GNRs modified with polyphenols (GNR-PA and GNR-GA) and demonstrated their ability to induce immunogenic cell death upon laser irradiation, releasing tumor-associated antigens (TAAs). The surface polyphenols on GNRs effectively captured released TAAs to shield them from clearance. In vivo studies confirmed increased accumulation of GNR-GA in lymph nodes and enhanced dendritic cell maturation, leading to promoted effector T cell infiltration into tumors. Furthermore, treatment combined with PD-1/PD-L1 pathway blockade demonstrated potent tumor regression and systemic immunotherapy efficacy. Our findings highlight the potential of this photothermal nanoplatform as a promising strategy to overcome the limitations of current cancer immunotherapy approaches and improve therapeutic outcomes.

5.
J Control Release ; 375: 209-235, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39244159

ABSTRACT

The proven efficacy of immunotherapy in fighting tumors has been firmly established, heralding a new era in harnessing both the innate and adaptive immune systems for cancer treatment. Despite its promise, challenges such as inefficient delivery, insufficient tumor penetration, and considerable potential toxicity of immunomodulatory agents have impeded the advancement of immunotherapies. Recent endeavors in the realm of tumor prophylaxis and management have highlighted the use of living biological entities, including bacteria, oncolytic viruses, and immune cells, as a vanguard for an innovative class of live biotherapeutic products (LBPs). These LBPs are gaining recognition for their inherent ability to target tumors. However, these LBPs must contend with significant barriers, including robust immune clearance mechanisms, cytotoxicity and other in vivo adverse effects. Priority must be placed on enhancing their safety and therapeutic indices. This review consolidates the latest preclinical research and clinical progress pertaining to the exploitation of engineered biologics, spanning bacteria, oncolytic viruses, immune cells, and summarizes their integration with combination therapies aimed at circumventing current clinical impasses. Additionally, the prospective utilities and inherent challenges of the biotherapeutics are deliberated, with the objective of accelerating their clinical application in the foreseeable future.

7.
ACS Nano ; 18(37): 25657-25670, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39215751

ABSTRACT

The potent CRISPR-Cas9 technology can correct genes in human mutated cells to achieve the treatment of multiple diseases, but it lacks safe and effective delivery systems. Herein, we proposed an oral microto-nano genome-editing system aiming at the enteric excessive level of TNF-α for specific gene therapy of inflammatory bowel disease (IBD). This editing system facilitated the assembly of Cas9/sgRNA ribonucleoprotein (RNP) into nanoclusters (NCs) through the bridging of disulfide bonds. RNP-NCs were subsequently encapsulated within inflammatory cell-targeted lipopolysaccharide-deleted outer membrane vesicles (dOMVs) sourced from Escherichia coli Nissle 1917, which were further shielded by an outer layer of calcium alginate microspheres (CAMs). By leveraging the protection effect of CAMs, the oral administration system withstood gastric acid degradation upon entry into the stomach, achieving targeted delivery to the intestines with high efficiency. As the pH gradually rose, the microscale CAMs swelled and disintegrated, releasing nanoscale RNP-NCs encapsulated in dOMVs into the intestines. These RNP-NCs@dOMVs could traverse the mucosal barrier and target inflammatory macrophages where conditionally activated Cas9/sgRNA RNPs effectively perform genomic editing of TNF-α within the nucleus. Such oral microto-nano genome-editing systems represent a promising translational platform for the treatment of IBD.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Therapy , Inflammatory Bowel Diseases , CRISPR-Cas Systems/genetics , Gene Editing/methods , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/genetics , Animals , Mice , Administration, Oral , Humans , Alginates/chemistry , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Ribonucleoproteins/chemistry , Tumor Necrosis Factor-alpha/metabolism , Escherichia coli/genetics
8.
J Am Chem Soc ; 146(32): 22675-22688, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39088029

ABSTRACT

Redox-responsive homodimer prodrug nanoassemblies (RHPNs) have emerged as a significant technology for overcoming chemotherapeutical limitations due to their high drug-loading capacity, low excipient-associated toxicity, and straightforward preparation method. Previous studies indicated that α-position disulfide bond bridged RHPNs exhibited rapid drug release rates but unsatisfactory assembly stability. In contrast, γ-disulfide bond bridged RHPNs showed better assembly stability but low drug release rates. Therefore, designing chemical linkages that ensure both stable assembly and rapid drug release remains challenging. To address this paradox of stable assembly and rapid drug release in RHPNs, we developed carbon-spaced double-disulfide bond (CSDD)-bridged RHPNs (CSDD-RHPNs) with two carbon-spaces. Pilot studies showed that CSDD-RHPNs with two carbon-spaces exhibited enhanced assembly stability, reduction-responsive drug release, and improved selective toxicity compared to α-/γ-position single disulfide bond bridged RHPNs. Based on these findings, CSDD-RHPNs with four and six carbon-spaces were designed to further investigate the properties of CSDD-RHPNs. These CSDD-RHPNs exhibited excellent assembly ability, safety, and prolonged circulation. Particularly, CSDD-RHPNs with two carbon-spaces displayed the best antitumor efficacy on 4T1 and B16-F10 tumor-bearing mice. CSDD chemical linkages offer novel perspectives on the rational design of RHPNs, potentially overcoming the design limitations regarding contradictory assembly ability and drug release rate.


Subject(s)
Carbon , Disulfides , Prodrugs , Disulfides/chemistry , Prodrugs/chemistry , Animals , Mice , Carbon/chemistry , Humans , Drug Liberation , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Cell Line, Tumor , Nanostructures/chemistry , Dimerization , Doxorubicin/chemistry , Doxorubicin/pharmacology
9.
RSC Adv ; 14(34): 24969, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39131500

ABSTRACT

[This corrects the article DOI: 10.1039/D4RA02811B.].

10.
Sci Adv ; 10(30): eado8222, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058786

ABSTRACT

The artificial mucus layer, such as hydrogels, used to repair the damaged intestinal barrier, is a promising treatment for inflammatory bowel disease (IBD). However, the currently reported hydrogel-based artificial barriers are administered via rectal injection, causing unnecessary discomfort to patients. Herein, we report an oral hydrogel precursor solution based on thiol-modified hyaluronic acid (HASH). Owing to the reactive oxygen species (ROS)-responsive gelling behavior, our precursor solution formed an artificial mucus coating over the inflamed regions of the intestines, blocking microbial invasion and reducing abnormally activated immune responses. Notably, HASH also modulated the gut microbiota, including increasing the diversity and enhancing the abundance of short-chain fatty acid-associated bacteria, which play a key role in gut homeostasis. We believe that the ROS-responsive artificial mucus layer is a promising strategy for the oral treatment of IBD.


Subject(s)
Hyaluronic Acid , Inflammatory Bowel Diseases , Mucus , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Mucus/metabolism , Animals , Hyaluronic Acid/chemistry , Administration, Oral , Mice , Gastrointestinal Microbiome/drug effects , Hydrogels/chemistry , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Disease Models, Animal
11.
Adv Sci (Weinh) ; 11(34): e2405583, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38984484

ABSTRACT

The clinical translation of tumor hypoxia intervention modalities still falls short of expectation, restricted by poor biocompatibility of oxygen-carrying materials, unsatisfactory oxygen loading performance, and abnormally high cellular oxygen consumption-caused insufficient hypoxia relief. Herein, a carrier-free oxygen nano-tank based on modular fluorination prodrug design and co-assembly nanotechnology is elaborately exploited, which is facilely fabricated through the molecular nanoassembly of a fluorinated prodrug (FSSP) of pyropheophorbide a (PPa) and an oxygen consumption inhibitor (atovaquone, ATO). The nano-tank adeptly achieves sufficient oxygen enrichment while simultaneously suppressing oxygen consumption within tumors for complete tumor hypoxia alleviation. Significant, the fluorination module in FSSP not only confers favorable co-assemblage of FSSP and ATO, but also empowers the nanoassembly to readily carry oxygen. As expected, it displays excellent oxygen carrying capacity, favorable pharmacokinetics, on-demand laser-triggerable ATO release, closed-loop tumor hypoxia relief, and significant enhancement to PPa-mediated PDT in vitro and in vivo. This study provides a novel nanotherapeutic paradigm for tumor hypoxia intervention-enhanced cancer therapy.


Subject(s)
Oxygen , Prodrugs , Tumor Hypoxia , Prodrugs/pharmacology , Mice , Animals , Tumor Hypoxia/drug effects , Oxygen/metabolism , Humans , Cell Line, Tumor , Photochemotherapy/methods , Disease Models, Animal , Chlorophyll/analogs & derivatives , Chlorophyll/metabolism , Chlorophyll/pharmacology , Mice, Nude , Nanotechnology/methods
12.
Int J Pharm ; 662: 124496, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39033943

ABSTRACT

Chemo-photodynamic synergistic therapy (CPST) holds tremendous promise for treating cancers. Unfortunately, existing CPST applications suffer from complex synthetic procedures, low drug co-loading efficiency, and carrier-related toxicity. To address these issues, we have developed a supramolecular carrier-free self-sensitized nanoassemblies by co-assembling podophyllotoxin (PTOX) and chlorin e6 (Ce6) to enhance CPST efficiency against tumors. The nanoassemblies show stable co-assembly performance in simulative vivo neural environment (∼150 nm), with high co-loading ability for PTOX (72.2 wt%) and Ce6 (27.8 wt%). In vivo, the nanoassemblies demonstrate a remarkable ability to accumulate at tumor sites by leveraging the enhanced permeability and retention (EPR) effect. The disintegration of nanoassemblies following photosensitizer bioactivation triggered by the acidic tumor environment effectively resolves the challenge of aggregation-caused quenching (ACQ) effect. Upon exposure to external light stimulation, the disintegrated nanoassemblies not only illuminate cancer cells synergistically but also exert a more potent antitumor effect when compared with PTOX and Ce6 administered alone. This self-sensitized strategy represents a significant step forward in CPST, offering a unique co-delivery paradigm for clinic cancer treatment.


Subject(s)
Chlorophyllides , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Podophyllotoxin , Porphyrins , Photochemotherapy/methods , Porphyrins/administration & dosage , Porphyrins/chemistry , Animals , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacokinetics , Humans , Cell Line, Tumor , Nanoparticles/chemistry , Podophyllotoxin/administration & dosage , Podophyllotoxin/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Female
13.
RSC Adv ; 14(30): 21260-21268, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38974225

ABSTRACT

The purpose of the study is to investigate the effect of ternary systems consisting of meloxicam with cyclodextrins (HP-ß-CD or SBE-ß-CD) and different polymers (HA, HPMC and PVP) on the stability of meloxicam. The t 0.9 values of meloxicam were determined within all the aforementioned systems and the influence of various polymers on the alteration in meloxicam's stability was evaluated. All three polymers altered the stability of meloxicam to varying degrees, with the extent of the effect being related to hydrophilicity, concentration of components, and the interaction of the newly formed ternary system. Among them, meloxicam demonstrated its highest degree of stabilization within the ternary system formed by SBE-ß-CD&HPMC and HP-ß-CD&HA. We characterized the ternary system of meloxicam using differential scanning calorimetry (DSC), X-ray diffraction, and scanning electron microscopy analysis, which determined the presence of ternary system inclusions. In addition, we investigated the optimized prescription of eye drops of meloxicam using the ternary system and further determined that the ternary system improved the stability of the drug in liquid formulations.

14.
Eur J Med Chem ; 276: 116646, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38972080

ABSTRACT

Cycloicaritin (CICT), a bioactive flavonoid derived from the genus Epimedium, exhibits a variety of beneficial biological activities, including promising anticancer effects. However, its poor oral bioavailability is attributed to its extremely low aqueous solubility and rapid elimination via phase II conjugative metabolism. To overcome these limitations, we designed and synthesized a series of carbamate-bridged prodrugs, protecting the hydroxyl group at the 3-position of cycloicaritin by binding with the N-terminus of a natural amino acid. The optimal prodrug 4b demonstrated a significant increase in aqueous solubility as compared to CICT, as well as improved stability in phase II metabolism, while allowing for a rapid release of CICT in the blood upon gastrointestinal absorption. The prodrug 4b also facilitated oral absorption through organic anion-transporting polypeptide 2B1-mediated transport and exhibited moderate cytotoxicity. Importantly, the prodrug enhanced the oral bioavailability of CICT and displayed dose-dependent antitumor activity with superior safety. In summary, the prodrug 4b is a novel potential antitumor drug candidate, and the carbamate-bridged amino acid prodrug approach is a promising strategy for the oral delivery of CICT.


Subject(s)
Amino Acids , Antineoplastic Agents , Carbamates , Drug Design , Drug Screening Assays, Antitumor , Prodrugs , Solubility , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/pharmacology , Humans , Carbamates/chemistry , Carbamates/pharmacology , Carbamates/chemical synthesis , Carbamates/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Structure-Activity Relationship , Amino Acids/chemistry , Amino Acids/pharmacology , Amino Acids/chemical synthesis , Molecular Structure , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Mice , Water/chemistry , Cell Line, Tumor , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/chemical synthesis , Flavonoids/pharmacokinetics , Male
15.
Int J Biol Macromol ; 273(Pt 2): 132909, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848832

ABSTRACT

The pathological changes in inflammatory bowel disease (IBD) include the disruption of intestinal barrier function and the infiltration of pathogenic microbes. The application of an artificial protective barrier at the site of inflammation can prevent bacterial infiltration, promote epithelial cell migration, and accelerate wound healing. In this study, dopamine-modified hyaluronic acid (HA-DA) was developed as a bioadhesive self-cross-linkable hydrogel, which acted as an enteroprotective agent to promote the healing of inflamed intestinal tissue. The adhesion strength HA-DA to mouse colon was 3.81-fold higher than HA. Moreover, HA-DA promoted Caco-2 cell proliferation and migration as well as had a strong physical barrier effect after gelation. After oral administration, the HA-DA reduced weight loss and attenuated impaired goblet cell function in mice with dextran sodium sulfate-induced IBD. In addition, HA-DA promoted restoration of the epithelial barrier by the upregulation of tight junction proteins. The results reported herein substantiated that self-cross-linkable hydrogel-based enteroprotective agents are a promising approach for the treatment of IBD.


Subject(s)
Hyaluronic Acid , Hydrogels , Inflammatory Bowel Diseases , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Animals , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Mice , Caco-2 Cells , Hydrogels/chemistry , Hydrogels/pharmacology , Cell Proliferation/drug effects , Protective Agents/pharmacology , Protective Agents/chemistry , Cell Movement/drug effects , Male , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Dextran Sulfate
16.
J Colloid Interface Sci ; 669: 731-739, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38735255

ABSTRACT

HYPOTHESIS: Hydrophilic cationic drugs such as mitoxantrone hydrochloride (MTO) pose a significant delivery challenge to the development of nanodrug systems. Herein, we report the use of a hydrophobic ion-pairing strategy to enhance the nano-assembly of MTO. EXPERIMENTS: We employed biocompatible sodium cholesteryl sulfate (SCS) as a modification module to form stable ion pairs with MTO, which balanced the intermolecular forces and facilitated nano-assembly. PEGylated MTO-SCS nanoassemblies (pMS NAs) were prepared via nanoprecipitation. We systematically evaluated the effect of the ratio of the drug module (MTO) to the modification module (SCS) on the nanoassemblies. FINDINGS: The increased lipophilicity of MTO-SCS ion pair could significantly improve the encapsulation efficiency (∼97 %) and cellular uptake efficiency of MTO. The pMS NAs showed prolonged blood circulation, maintained the same level of tumor antiproliferative activity, and exhibited reduced toxicity compared with the free MTO solution. It is noteworthy that the stability, cellular uptake, cytotoxicity, and in vivo pharmacokinetic behavior of the pMS NAs increased in proportion to the molar ratio of SCS to MTO. This study presents a self-assembly strategy mediated by ion pairing to overcome the challenges commonly associated with the poor assembly ability of hydrophilic cationic drugs.


Subject(s)
Antineoplastic Agents , Cholesterol Esters , Hydrophobic and Hydrophilic Interactions , Mitoxantrone , Mitoxantrone/chemistry , Mitoxantrone/pharmacology , Mitoxantrone/pharmacokinetics , Humans , Animals , Cholesterol Esters/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice , Cell Proliferation/drug effects , Cations/chemistry , Cell Survival/drug effects , Particle Size , Nanoparticles/chemistry , Surface Properties , Drug Carriers/chemistry , Drug Screening Assays, Antitumor , Cell Line, Tumor , Polyethylene Glycols/chemistry
17.
J Control Release ; 370: 653-676, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735396

ABSTRACT

Pyroptosis, a non-apoptotic programmed cellular inflammatory death mechanism characterized by gasdermin (GSDM) family proteins, has gathered significant attention in the cancer treatment. However, the alarming clinical trial data indicates that pyroptosis-mediated cancer therapeutic efficiency is still unsatisfactory. It is essential to integrate the burgeoning biomedical findings and innovations with potent technology to hasten the development of pyroptosis-based antitumor drugs. Considering the rapid development of pyroptosis-driven cancer nanotherapeutics, here we aim to summarize the recent advances in this field at the intersection of pyroptosis and nanotechnology. First, the foundation of pyroptosis-based nanomedicines (NMs) is outlined to illustrate the reliability and effectiveness for the treatment of tumor. Next, the emerging nanotherapeutics designed to induce pyroptosis are overviewed. Moreover, the cross-talk between pyroptosis and other cell death modalities are discussed, aiming to explore the mechanistic level relationships to provide guidance strategies for the combination of different types of antitumor drugs. Last but not least, the opportunities and challenges of employing pyroptosis-based NMs in potential clinical cancer therapy are highlighted.


Subject(s)
Antineoplastic Agents , Neoplasms , Pyroptosis , Pyroptosis/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/metabolism , Neoplasms/pathology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Animals , Nanomedicine/methods , Nanotechnology/methods , Nanoparticles/administration & dosage
18.
Adv Healthc Mater ; 13(22): e2400809, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38752756

ABSTRACT

Chemodynamic therapy (CDT) has emerged as a transformative paradigm in the realm of reactive oxygen species -mediated cancer therapies, exhibiting its potential as a sophisticated strategy for precise and effective tumor treatment. CDT primarily relies on metal ions and hydrogen peroxide to initiate Fenton or Fenton-like reactions, generating cytotoxic hydroxyl radicals. Its notable advantages in cancer treatment are demonstrated, including tumor specificity, autonomy from external triggers, and a favorable side-effect profile. Recent advancements in nanomedicine are devoted to enhancing CDT, promising a comprehensive optimization of CDT efficacy. This review systematically elucidates cutting-edge achievements in chemodynamic nanotherapeutics, exploring strategies for enhanced Fenton or Fenton-like reactions, improved tumor microenvironment modulation, and precise regulation in energy metabolism. Moreover, a detailed analysis of diverse CDT-mediated combination therapies is provided. Finally, the review concludes with a comprehensive discussion of the prospects and intrinsic challenges to the application of chemodynamic nanotherapeutics in the domain of cancer treatment.


Subject(s)
Nanomedicine , Neoplasms , Tumor Microenvironment , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Tumor Microenvironment/drug effects , Nanomedicine/methods , Animals , Reactive Oxygen Species/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Hydrogen Peroxide/chemistry , Nanoparticles/chemistry , Nanoparticles/therapeutic use
19.
Asian J Pharm Sci ; 19(2): 100908, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38623486

ABSTRACT

The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of reducing substances (e.g., ascorbic acid, glutathione, uric acid and tea polyphenols) in the systemic circulation. This may lead to toxicity, particularly in oral prodrugs that require more frequent and high-dose treatments. Fine-tuning the activation kinetics of these prodrugs is a promising prospect for more efficient on-target cancer therapies. In this study, disulfide, steric disulfide, and ester bonds were used to bridge cabazitaxel (CTX) to an intestinal lymph vessel-directed triglyceride (TG) module. Then, synthetic prodrugs were efficiently incorporated into self-nanoemulsifying drug delivery system (corn oil and Maisine CC were used as the oil phase and Cremophor EL as the surfactant). All three prodrugs had excellent gastric stability and intestinal permeability. The oral bioavailability of the disulfide bond-based prodrugs (CTX-(C)S-(C)S-TG and CTX-S-S-TG) was 11.5- and 19.1-fold higher than that of the CTX solution, respectively, demonstrating good oral delivery efficiency. However, the excessive reduction sensitivity of the disulfide bond resulted in lower plasma stability and safety of CTX-S-S-TG than that of CTX-(C)S-(C)S-TG. Moreover, introducing steric hindrance into disulfide bonds could also modulate drug release and cytotoxicity, significantly improving the anti-tumor activity even compared to that of intravenous CTX solution at half dosage while minimizing off-target adverse effects. Our findings provide insights into the design and fine-tuning of different disulfide bond-based linkers, which may help identify oral prodrugs with more potent therapeutic efficacy and safety for cancer therapy.

20.
J Agric Food Chem ; 72(15): 8618-8631, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38569082

ABSTRACT

Daidzein (DAN) is an isoflavone, and it is often found in its natural form in soybean and food supplements. DAN has poor bioavailability owing to its extremely low water solubility and first-pass metabolism. Herein, we hypothesized that a bioactivatable natural amino acid-bearing carbamate prodrug strategy could increase the water solubility and metabolic stability of DAN. To test our hypothesis, nine amino acid prodrugs of DAN were designed and synthesized. Compared with DAN, the optimal prodrug (daidzein-4'-O-CO-N-isoleucine, D-4'-I) demonstrated enhanced water solubility and improved phase II metabolic stability and activation to DAN in plasma. In addition, unlike the passive transport of DAN, D-4'-I maintained high permeability via organic anion-transporting polypeptide 2B1 (OATP2B1)-mediated transport. Importantly, D-4'-I increased the oral bioavailability by 15.5-fold, reduced the gender difference, and extended the linear absorption capacity in the pharmacokinetics of DAN in rats. Furthermore, D-4'-I exhibited dose-dependent protection against liver injury. Thus, the natural amino acid-bearing carbamate prodrug strategy shows potential in increasing water solubility and improving phase II metabolic stability to enhance the oral bioavailability of DAN.


Subject(s)
Isoflavones , Prodrugs , Animals , Rats , Administration, Oral , Amino Acids/chemistry , Biological Availability , Carbamates/chemistry , Prodrugs/chemistry , Solubility , Water
SELECTION OF CITATIONS
SEARCH DETAIL