Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Zookeys ; 1175: 5-162, 2023.
Article in English | MEDLINE | ID: mdl-37636532

ABSTRACT

The parasitoid wasp genus Alphomelon Mason, 1981 is revised, based on a combination of basic morphology (dichotomous key and brief diagnostic descriptions), DNA barcoding, biology (host data and wasp cocoons), and distribution data. A total of 49 species is considered; the genus is almost entirely Neotropical (48 species recorded from that region), but three species reach the Nearctic, with one of them extending as far north as 45° N in Canada. Alphomelon parasitizes exclusively Hesperiinae caterpillars (Lepidoptera: Hesperiidae), mostly feeding on monocots in the families Arecaceae, Bromeliaceae, Cannaceae, Commelinaceae, Heliconiaceae, and Poaceae. Most wasp species parasitize either on one or very few (2-4) host species, usually within one or two hesperiine genera; but some species can parasitize several hosts from up to nine different hesperiine genera. Among species with available data for their cocoons, roughly half weave solitary cocoons (16) and half are gregarious (17); cocoons tend to be surrounded by a rather distinctive, coarse silk (especially in solitary species, but also distinguishable in some gregarious species). Neither morphology nor DNA barcoding alone was sufficient on its own to delimit all species properly; by integrating all available evidence (even if incomplete, as available data for every species is different) a foundation is provided for future studies incorporating more specimens, especially from South America. The following 30 new species are described: cruzi, itatiaiensis, and palomae, authored by Shimbori & Fernandez-Triana; and adrianguadamuzi, amazonas, andydeansi, calixtomoragai, carolinacanoae, christerhanssoni, diniamartinezae, duvalierbricenoi, eldaarayae, eliethcantillanoae, gloriasihezarae, guillermopereirai, hazelcambroneroae, josecortesi, keineraragoni, luciarosae, manuelriosi, mikesharkeyi, osvaldoespinozai, paramelanoscelis, paranigriceps, petronariosae, ricardocaleroi, rigoi, rostermoragai, sergioriosi, and yanayacu, authored by Fernandez-Triana & Shimbori.

2.
Gigascience ; 112022 04 28.
Article in English | MEDLINE | ID: mdl-35482490

ABSTRACT

BACKGROUND: Traditional biomonitoring approaches have delivered a basic understanding of biodiversity, but they cannot support the large-scale assessments required to manage and protect entire ecosystems. This study used DNA metabarcoding to assess spatial and temporal variation in species richness and diversity in arthropod communities from 52 protected areas spanning 3 Canadian ecoregions. RESULTS: This study revealed the presence of 26,263 arthropod species in the 3 ecoregions and indicated that at least another 3,000-5,000 await detection. Results further demonstrate that communities are more similar within than between ecoregions, even after controlling for geographical distance. Overall α-diversity declined from east to west, reflecting a gradient in habitat disturbance. Shifts in species composition were high at every site, with turnover greater than nestedness, suggesting the presence of many transient species. CONCLUSIONS: Differences in species composition among their arthropod communities confirm that ecoregions are a useful synoptic for biogeographic patterns and for structuring conservation efforts. The present results also demonstrate that metabarcoding enables large-scale monitoring of shifts in species composition, making it possible to move beyond the biomass measurements that have been the key metric used in prior efforts to track change in arthropod communities.


Subject(s)
Arthropods , Ecosystem , Animals , Arthropods/genetics , Biodiversity , Canada , DNA Barcoding, Taxonomic/methods
3.
Mol Ecol Resour ; 16(3): 809-22, 2016 May.
Article in English | MEDLINE | ID: mdl-26602739

ABSTRACT

DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied area of the High Arctic, the Zackenberg Valley in Northeast Greenland. To demonstrate its utility, we apply the library to identify nearly 20 000 arthropod individuals from two Malaise traps, each operated for two summers. Drawing on this material, we estimate the coverage of previous morphology-based species inventories, derive a snapshot of faunal turnover in space and time and describe the abundance and phenology of species in the rapidly changing arctic environment. Overall, 403 terrestrial animal and 160 vascular plant species were recorded by morphology-based techniques. DNA barcodes (CO1) offered high resolution in discriminating among the local animal taxa, with 92% of morphologically distinguishable taxa assigned to unique Barcode Index Numbers (BINs) and 93% to monophyletic clusters. For vascular plants, resolution was lower, with 54% of species forming monophyletic clusters based on barcode regions rbcLa and ITS2. Malaise catches revealed 122 BINs not detected by previous sampling and DNA barcoding. The insect community was dominated by a few highly abundant taxa. Even closely related taxa differed in phenology, emphasizing the need for species-level resolution when describing ongoing shifts in arctic communities and ecosystems. The DNA barcode library now established for Zackenberg offers new scope for such explorations, and for the detailed dissection of interspecific interactions throughout the community.


Subject(s)
Biota , DNA Barcoding, Taxonomic/methods , Ecosystem , Animals , Arctic Regions , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Greenland , Phylogeny , Plants , Ribulose-Bisphosphate Carboxylase/genetics
4.
PLoS One ; 9(7): e101385, 2014.
Article in English | MEDLINE | ID: mdl-25004106

ABSTRACT

BACKGROUND: Many studies have shown the suitability of sequence variation in the 5' region of the mitochondrial cytochrome c oxidase I (COI) gene as a DNA barcode for the identification of species in a wide range of animal groups. We examined 471 species in 147 genera of Hemiptera: Auchenorrhyncha drawn from specimens in the Canadian National Collection of Insects to assess the effectiveness of DNA barcoding in this group. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of the COI gene revealed less than 2% intra-specific divergence in 93% of the taxa examined, while minimum interspecific distances exceeded 2% in 70% of congeneric species pairs. Although most species are characterized by a distinct sequence cluster, sequences for members of many groups of closely related species either shared sequences or showed close similarity, with 25% of species separated from their nearest neighbor by less than 1%. CONCLUSIONS/SIGNIFICANCE: This study, although preliminary, provides DNA barcodes for about 8% of the species of this hemipteran suborder found in North America north of Mexico. Barcodes can enable the identification of many species of Auchenorrhyncha, but members of some species groups cannot be discriminated. Future use of DNA barcodes in regulatory, pest management, and environmental applications will be possible as the barcode library for Auchenorrhyncha expands to include more species and broader geographic coverage.


Subject(s)
DNA Barcoding, Taxonomic , Hemiptera/classification , Hemiptera/genetics , Animals , DNA, Mitochondrial , Evolution, Molecular , Genes, Insect , Genetic Variation
5.
Mol Ecol Resour ; 14(3): 508-18, 2014 May.
Article in English | MEDLINE | ID: mdl-24299419

ABSTRACT

In this study, we evaluated the efficacy of various primers for the purpose of DNA barcoding old, pinned museum specimens of blackflies (Diptera: Simuliidae). We analysed 271 pinned specimens representing two genera and at least 36 species. Due to the age of our material, we targeted overlapping DNA fragments ranging in size from 94 to 407 bp. We were able to recover valid sequences from 215 specimens, of which 18% had 500- to 658-bp barcodes, 36% had 201- to 499-bp barcodes and 46% had 65- to 200-bp barcodes. Our study demonstrates the importance of choosing suitable primers when dealing with older specimens and shows that even very short sequences can be diagnostically informative provided that an appropriate gene region is used. Our study also highlights the lack of knowledge surrounding blackfly taxonomy, and we briefly discuss the need for further phylogenetic studies in this socioeconomically important family of insects.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA Primers/genetics , Simuliidae/classification , Simuliidae/genetics , Animals , Electron Transport Complex IV/genetics , Insect Proteins/genetics , Molecular Sequence Data , Museums , Phylogeny , Simuliidae/enzymology
6.
Mol Ecol Resour ; 13(2): 168-76, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23228011

ABSTRACT

Microgastrine wasps are among the most species-rich and numerous parasitoids of caterpillars (Lepidoptera). They are often host-specific and thus are extensively used in biological control efforts and figure prominently in trophic webs. However, their extraordinary diversity coupled with the occurrence of many cryptic species produces a significant taxonomic impediment. We present and release the results of 8 years (2004-2011) of DNA barcoding microgastrine wasps. Currently they are the best represented group of parasitoid Hymenoptera in the Barcode of Life Data System (BOLD), a massive barcode storage and analysis data management site for the International Barcoding of Life (iBOL) program. There are records from more than 20 000 specimens from 75 countries, including 50 genera (90% of the known total) and more than 1700 species (as indicated by Barcode Index Numbers and 2% MOTU). We briefly discuss the importance of this DNA data set and its collateral information for future research in: (1) discovery of cryptic species and description of new taxa; (2) estimating species numbers in biodiversity inventories; (3) clarification of generic boundaries; (4) biological control programmes; (5) molecular studies of host-parasitoid biology and ecology; (6) evaluation of shifts in species distribution and phenology; and (7) fostering collaboration at national, regional and world levels. The integration of DNA barcoding with traditional morphology-based taxonomy, host records, and other data has substantially improved the accuracy of microgastrine wasp identifications and will significantly accelerate further studies on this group of parasitoids.


Subject(s)
DNA Barcoding, Taxonomic , Phylogeny , Wasps/classification , Wasps/genetics , Animals , Base Sequence , Molecular Sequence Data , Sequence Analysis, DNA
7.
Mol Ecol ; 20(8): 1772-80, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21366747

ABSTRACT

We employ molecular methods to profile the diet of the little brown bat, Myotis lucifugus, and describe spatial and temporal changes in diet over their maternity season. We identified 61 prey species of insects and 5 species of arachnid. The largest proportion of prey (∼32%) were identified as species of the mass-emerging Ephemeroptera (mayfly) genus Caenis. Bats roosting in agricultural settings had lower dietary richness than those occupying a roost located on a forest fragment in a conservation area. We detected temporal fluctuations in diet over the maternity season. Dipteran (fly) species dominated the diet early in the season, replaced later by species of mayfly. Because our methodology provides species-level identification of prey, we were able to isolate environmental indicator species in the diet and draw conclusions about the location and type of their foraging habitat and the health of these aquatic systems. The species detected suggested that the bats use variable habitats; members of one agricultural roost foraged on insects originating in rivers or streams while those in another agricultural roost and the forest roost fed on insects from pond or lake environments. All source water for prey was of fair to good quality, though no species detected are intolerant of pollution thus the habitat cannot be classified as pristine. Our study outlines a model system to investigate the abiotic and biotic interactions between habitat factors through this simple food chain to the top predator.


Subject(s)
Chiroptera/physiology , Diet/veterinary , Ecosystem , Food Chain , Animals , Arachnida/genetics , Insecta/genetics , Predatory Behavior
8.
Bull Entomol Res ; 101(4): 429-34, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21272395

ABSTRACT

Although DNA barcode coverage has grown rapidly for many insect orders, there are some groups, such as scale insects, where sequence recovery has been difficult. However, using a recently developed primer set, we recovered barcode records from 373 specimens, providing coverage for 75 species from 31 genera in two families. Overall success was >90% for mealybugs and >80% for armored scale species. The G·C content was very low in most species, averaging just 16.3%. Sequence divergences (K2P) between congeneric species averaged 10.7%, while intra-specific divergences averaged 0.97%. However, the latter value was inflated by high intra-specific divergence in nine taxa, cases that may indicate species overlooked by current taxonomic treatments. Our study establishes the feasibility of developing a comprehensive barcode library for scale insects and indicates that its construction will both create an effective system for identifying scale insects and reveal taxonomic situations worthy of deeper analysis.


Subject(s)
DNA Barcoding, Taxonomic , Hemiptera/genetics , Animals , Electron Transport Complex IV/genetics , Female , Hemiptera/classification , Male
9.
Mol Ecol Resour ; 10(4): 606-14, 2010 Jul.
Article in English | MEDLINE | ID: mdl-21565065

ABSTRACT

Species identification of earthworms is usually achieved by careful observation of morphological features, often sexual characters only present in adult specimens. Consequently, juveniles or cocoons are often impossible to identify, creating a possible bias in studies that aim to document species richness and abundance. DNA barcoding, the use of a short standardized DNA fragment for species identification, is a promising approach for species discrimination. When a reference library is available, DNA-based identification is possible for all life stages. In this study, we show that DNA barcoding is an unrivaled tool for high volume identification of juvenile earthworms. To illustrate this advance, we generated DNA barcodes for specimens of Lumbricus collected from three temperate grasslands in western France. The analysis of genetic distances between individuals shows that juvenile sequences unequivocally match DNA barcode clusters of previously identified adult specimens, demonstrating the potential of DNA barcoding to provide exhaustive specimen identification for soil ecological research.

10.
Mol Ecol ; 18(24): 5161-79, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19912535

ABSTRACT

A major question in our understanding of eukaryotic biodiversity is whether small bodied taxa have cosmopolitan distributions or consist of geographically localized cryptic taxa. Here, we explore the global phylogeography of the freshwater cladoceran Polyphemus pediculus (Linnaeus, 1761) (Crustacea, Onychopoda) using two mitochondrial genes, cytochrome c oxidase subunit I and 16s ribosomal RNA, and one nuclear marker, 18s ribosomal RNA. The results of neighbour-joining and Bayesian phylogenetic analyses reveal an exceptionally pronounced genetic structure at both inter- and intra-continental scales. The presence of well-supported, deeply divergent phylogroups across the Holarctic suggests that P. pediculus represents an assemblage of at least nine, largely allopatric cryptic species. Interestingly, all phylogenetic analyses support the reciprocal paraphyly of Nearctic and Palaearctic clades. Bayesian inference of ancestral distributions suggests that P. pediculus originated in North America or East Asia and that European lineages of Polyphemus were established by subsequent intercontinental dispersal events from North America. Japan and the Russian Far East harbour exceptionally high levels of genetic diversity at both regional and local scales. In contrast, little genetic subdivision is apparent across the formerly glaciated regions of Europe and North America, areas that historical demographic analyses suggest that were recolonized just 5500-24 000 years ago.


Subject(s)
Cladocera/genetics , Evolution, Molecular , Genetic Variation , Phylogeny , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Fresh Water , Genetics, Population , Geography , Haplotypes , Population Dynamics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Sequence Alignment , Sequence Analysis, DNA , Zooplankton/genetics
11.
Mol Ecol Resour ; 9 Suppl s1: iv-vi, 2009 May.
Article in English | MEDLINE | ID: mdl-21564959
12.
J Fish Biol ; 74(2): 329-56, 2009 Feb.
Article in English | MEDLINE | ID: mdl-20735564

ABSTRACT

FISH-BOL, the Fish Barcode of Life campaign, is an international research collaboration that is assembling a standardized reference DNA sequence library for all fishes. Analysis is targeting a 648 base pair region of the mitochondrial cytochrome c oxidase I (COI) gene. More than 5000 species have already been DNA barcoded, with an average of five specimens per species, typically vouchers with authoritative identifications. The barcode sequence from any fish, fillet, fin, egg or larva can be matched against these reference sequences using BOLD; the Barcode of Life Data System (http://www.barcodinglife.org). The benefits of barcoding fishes include facilitating species identification, highlighting cases of range expansion for known species, flagging previously overlooked species and enabling identifications where traditional methods cannot be applied. Results thus far indicate that barcodes separate c. 98 and 93% of already described marine and freshwater fish species, respectively. Several specimens with divergent barcode sequences have been confirmed by integrative taxonomic analysis as new species. Past concerns in relation to the use of fish barcoding for species discrimination are discussed. These include hybridization, recent radiations, regional differentiation in barcode sequences and nuclear copies of the barcode region. However, current results indicate these issues are of little concern for the great majority of specimens.


Subject(s)
DNA Barcoding, Taxonomic , Animals , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Fishes/genetics , Genes, Mitochondrial , Species Specificity
13.
J Fish Biol ; 74(2): 377-402, 2009 Feb.
Article in English | MEDLINE | ID: mdl-20735566

ABSTRACT

The freshwater fish fauna of Mexico and Guatemala is exceptionally diverse with >600 species, many endemic. In this study, patterns of sequence divergence were analysed in representatives of this fauna using cytochrome c oxidase subunit 1 (COI) DNA barcodes for 61 species in 36 genera. The average divergence among conspecific individuals was 0.45%, while congeneric taxa showed 5.1% divergence. Three species of Poblana, each occupying a different crater lake in the arid regions of Central Mexico, have had a controversial taxonomic history but are usually regarded as endemics to a single lake. They possess identical COI barcodes, suggesting a very recent history of isolation. Representatives of the Cichlidae, a complex and poorly understood family, were well discriminated by barcodes. Many species of Characidae seem to be young, with low divergence values (<2%), but nevertheless, clear barcode clusters were apparent in the Bramocharax-Astyanax complex. The symbranchid, Opisthernon aenigmaticum, has been regarded as a single species ranging from Guatemala to Mexico, but it includes two deeply divergent barcode lineages, one a possible new endemic species. Aside from these special cases, the results confirm that DNA barcodes will be highly effective in discriminating freshwater fishes from Central America and that a comprehensive analysis will provide new important insights for understanding diversity of this fauna.


Subject(s)
DNA Barcoding, Taxonomic , Fishes/genetics , Genetic Variation , Animals , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Evolution, Molecular , Fishes/classification , Fresh Water , Guatemala , Mexico , Phylogeny , Sequence Analysis, DNA , Species Specificity
14.
Mol Ecol Resour ; 8(6): 1189-201, 2008 Nov.
Article in English | MEDLINE | ID: mdl-21586006

ABSTRACT

A 658-bp fragment of mitochondrial DNA from the 5' region of the mitochondrial cytochrome c oxidase 1 (COI) gene has been adopted as the standard DNA barcode region for animal life. In this study, we test its effectiveness in the discrimination of over 300 species of aphids from more than 130 genera. Most (96%) species were well differentiated, and sequence variation within species was low, averaging just 0.2%. Despite the complex life cycles and parthenogenetic reproduction of aphids, DNA barcodes are an effective tool for identification.

15.
Mol Ecol ; 15(14): 4459-75, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17107476

ABSTRACT

The Pleistocene glaciations represent the most recent and dramatic series of habitat changes since the Cretaceous. The impact of these events was particularly acute for aquatic taxa with poor powers of dispersal, but few organisms have evolutionary histories more intimately entwined with the advance and retreat of ice than the 'glacial relicts'. In this study, we used a mitochondrial gene, cytochrome c oxidase subunit I (COI), to examine and compare the phylogeographical structure of two glacial relict crustaceans (Limnocalanus macrurus and members of the Mysis relicta species group) across North America. In both cases, we found a sharp phylogenetic division between populations from inland lakes formed during glacial retreat, and arctic lakes isolated from polar seas via isostatic rebound. However, the depth of this phylogenetic partition varied between taxa. In L. macrurus, nucleotide sequence divergence of 2.2% between these zones is consistent with its current status as a single morphologically variable species, but in Mysis the split occurred among recently described, morphologically conserved species, at a divergence of 8.2%. The disparity in the depth of divergence indicates a history of recurrent freshwater invasions from the arctic seas, in concordance with previous studies of Eurasian glacial relicts. However, we suggest further consideration of a largely overlooked explanation that could account for some of the discrepancies between molecular divergences and glaciation events. Many cladogenetic events could have occurred in arctic seas prior to the transition to inland waters, a possibility supported both by the complex physical and ionic history of arctic seas and by high marine and estuarine lineage diversity in the north.


Subject(s)
Crustacea/physiology , Geography , Ice Cover , Phylogeny , Animals , Crustacea/genetics , Electron Transport Complex IV/genetics , Genetic Variation , Haplotypes , North America
16.
Med Vet Entomol ; 20(4): 413-24, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17199753

ABSTRACT

A short fragment of mt DNA from the cytochrome c oxidase 1 (CO1) region was used to provide the first CO1 barcodes for 37 species of Canadian mosquitoes (Diptera: Culicidae) from the provinces Ontario and New Brunswick. Sequence variation was analysed in a 617-bp fragment from the 5' end of the CO1 region. Sequences of each mosquito species formed barcode clusters with tight cohesion that were usually clearly distinct from those of allied species. CO1 sequence divergences were, on average, nearly 20 times higher for congeneric species than for members of a species; divergences between congeneric species averaged 10.4% (range 0.2-17.2%), whereas those for conspecific individuals averaged 0.5% (range 0.0-3.9%).


Subject(s)
Culicidae/classification , Culicidae/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Animals , Canada , Phylogeny
17.
J Hered ; 96(3): 279-84, 2005.
Article in English | MEDLINE | ID: mdl-15731217

ABSTRACT

A complete DNA-based inventory of the Earth's present biota using large-scale high-throughput DNA sequencing of signature region(s) (DNA barcoding) is an ambitious proposal rivaling the Human Genome Project. We examine whether this approach will also enable us to assess the past diversity of the earth's biota. To test this, we sequenced the 5' terminus of the mitochondrial cytochrome c oxidase I (COI) gene of individuals belonging to a group of extinct ratite birds, the moa of New Zealand. Moa comprised a large number of taxa that radiated in isolation on this oceanic landmass. Using a phylogenetic approach based on a large data set including protein coding and 12S DNA sequences as well as morphology, we now have precise information about the number of moa species that once existed. We show that each of the moa species detected using this extensive data set has a unique COI barcode(s) and that they all show low levels of within-species COI variation. Consequently, we conclude that COI sequences accurately identify the species discovered using the larger data set. Hence, more generally, this study suggests that DNA barcoding might also help us detect other extinct animal species and that a large-scale inventory of ancient life is possible.


Subject(s)
DNA, Mitochondrial/genetics , Palaeognathae/genetics , Phylogeny , Adaptation, Physiological , Animals , DNA, Mitochondrial/chemistry , Electron Transport Complex IV/genetics , Evolution, Molecular , Geography , Molecular Sequence Data , New Zealand , Palaeognathae/classification , Sequence Analysis, DNA , Species Specificity
18.
Heredity (Edinb) ; 92(3): 197-203, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14981532

ABSTRACT

The geographical range of the amphipod crustacean Echinogammarus ischnus has expanded over the past century from the Ponto-Caspian region to Western Europe, the Baltic Sea, and the Great Lakes of North America. The present study explores the phylogeographic patterns of this amphipod across its current distribution, based on an examination of nucleotide diversity in the mitochondrial cytochrome c oxidase subunit I (COI) gene. Marked genetic divergence exists among populations of E. ischnus from the Black and Caspian Seas, as well as those from the drainage system of the Black Sea. This divergence suggests the prolonged geographic isolation of these native populations, reflecting the limited dispersal capability of E. ischnus. By contrast, invading populations are characterized by a lack of genetic variation; a single mitochondrial genotype of Black Sea origin has colonized sites from the Rhine River to North America. The dispersal pattern in E. ischnus is very similar to that in the Ponto-Caspian cladoceran Cercopagis pengoi. Despite their contrasting life history strategies, these invading species followed the same route of invasion from the northern Black Sea to the Baltic Sea region, and subsequently to North America.


Subject(s)
Amphipoda/genetics , Electron Transport Complex IV/genetics , Genetics, Population , Haplotypes/genetics , Amphipoda/enzymology , Animals , DNA, Mitochondrial/genetics , Genetic Variation , Molecular Sequence Data , Oceans and Seas , Phylogeny , Polymorphism, Genetic
19.
Mol Ecol ; 13(1): 97-107, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14653792

ABSTRACT

The morphological stasis of many freshwater crustaceans has resulted in the prior delineation of cosmopolitan species and has been explained by their capacity for long-distance dispersal. This study examines the phylogeography of Daphnia obtusa, a cladoceran thought to be widespread in North America. However, sequence variation of the mitochondrial cytochrome c oxidase subunit I gene indicates that this taxon is composed of two morphologically cryptic species, designated D. obtusa NA1 and NA2. NA2 is restricted to the east, whereas NA1 is broadly distributed across the United States, and is subdivided into four phylogroups that show weak genetic differentiation over broad geographical areas, which likely reflects recent long-distance dispersal. The current distributions of the four phylogroups in NA1 can be explained by recent range expansion from different refugia following the last Pleistocene glacial advance. Interestingly, the mitochondrial phylogroups identified in this study do not correspond to lineages detected in a previous allozyme analysis. However, the latter groups are associated with a habitat shift suggesting that natural selection may have played a role in their divergence. The results of this and previous studies illustrate the complicated biogeographical history of freshwater cladocerans.


Subject(s)
Daphnia/genetics , Genetic Variation , Homing Behavior/physiology , Phylogeny , Animals , Base Sequence , Bayes Theorem , Cluster Analysis , DNA Primers , DNA, Mitochondrial/genetics , Daphnia/physiology , Fresh Water , Geography , Models, Genetic , Molecular Sequence Data , North America , Population Dynamics , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...