Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Oncol ; 17(11): 2415-2431, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37341059

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest of cancers. Attempts to develop targeted therapies still need to be established. Some oncogenic mechanisms in PDAC carcinogenesis harness the EGFR/ERBB receptor family. To explore the effects on pancreatic lesions, we attempted simultaneous blockade of all ERBB ligands in a PDAC mouse model. To this end, we engineered a molecular decoy, TRAP-FC , comprising the ligand-binding domains of both EGFR and ERBB4 and able to trap all ERBB ligands. Next, we generated a transgenic mouse model (CBATRAP/0 ) expressing TRAP-FC ubiquitously under the control of the chicken-beta-actin promoter and crossed these mice with KRASG12D/+ mice (Kras) to generate Trap/Kras mice. The resulting mice displayed decreased emergence of spontaneous pancreatic lesion areas and exhibited reduced RAS activity and decreased activities of ERBBs, with the exception of ERBB4, which showed increased activity. To identify the involved receptor(s), we employed CRISPR/Cas9 DNA editing to singly delete each ERBB receptor in the human pancreatic carcinoma cell line Panc-1. Ablation of each ERBB family member, especially the loss of EGFR or ERBB2/HER2, altered signaling downstream of the other three ERBB receptors and decreased cell proliferation, migration, and tumor growth. We conclude that simultaneously blocking the entire ERBB receptor family is therapeutically more effective than individually inhibiting only one receptor or ligand in terms of reducing pancreatic tumor burden. In summary, trapping all ERBB ligands can reduce pancreatic lesion area and RAS activity in a murine model of pancreatic adenocarcinoma; hence, it might represent a promising approach to treat PDAC in patients.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Ligands , Mice, Inbred CBA , Mice, Transgenic , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Receptor, ErbB-4/metabolism , Pancreatic Neoplasms
2.
Mol Oncol ; 14(8): 1653-1669, 2020 08.
Article in English | MEDLINE | ID: mdl-32335999

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) will soon belong to the top three cancer killers. The only approved specific PDAC therapy targets the epidermal growth factor receptor (EGFR). Although EGFR is a crucial player in PDAC development, EGFR-based therapy is disappointing. In this study, we evaluated the role of the EGFR ligand betacellulin (BTC) in PDAC. The expression of BTC was investigated in human pancreatic cancer specimen. Then, we generated a BTC knockout mouse model by CRISPR/Cas9 technology and a BTC overexpression model. Both models were crossed with the Ptf1aCre/+ ;KRASG12D/+ (KC) mouse model (B-/- KC or BKC, respectively). In addition, EGFR, ERBB2, and ERBB4 were investigated by the pancreas-specific deletion of each receptor using the Cre-loxP system. Tumor initiation and progression were analyzed in all mouse lines, and the underlying molecular biology of PDAC was investigated at different time points. BTC is expressed in human and murine PDAC. B-/- KC mice showed a decelerated PDAC progression, associated with decreased EGFR activation. BKC mice developed severe PDAC with a poor survival rate. The dramatically increased BTC-mediated tumor burden was EGFR-dependent, but also ERBB4 and ERBB2 were involved in PDAC development or progression, as depletion of EGFR, ERBB2, or ERBB4 significantly improved the survival rate of BTC-mediated PDAC. BTC increases PDAC tumor burden dramatically by enhanced RAS activation. EGFR signaling, ERBB2 signaling, and ERBB4 signaling are involved in accelerated PDAC development mediated by BTC indicating that targeting the whole ERBB family, instead of a single receptor, is a promising strategy for the development of future PDAC therapies.


Subject(s)
Adenocarcinoma/metabolism , Betacellulin/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-4/metabolism , Signal Transduction , Animals , Body Weight , ErbB Receptors/metabolism , Humans , Mice, Transgenic , Pancreas/metabolism , Pancreas/pathology , Phenotype , Phosphorylation , Tumor Burden , ras Proteins/metabolism , Pancreatic Neoplasms
3.
J Gastroenterol ; 55(3): 317-329, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31456099

ABSTRACT

BACKGROUND: The EGFR ligand betacellulin (BTC) has been previously shown to protect mice against experimentally induced acute pancreatitis (AP). BTC binds both autonomous ERBB receptors EGFR and ERBB4. In this study, we evaluated the mechanism underlying the protection from AP-associated inflammation in detail. METHODS: AP was induced with cerulein or L-arginine and investigated in a pancreas-specific ERBB4 knockout and in an EGFR knockdown mouse model (EgfrWa5/+). Pancreatitis was evaluated by scoring inflammation, necrosis, and edema, while microarrays were performed to analyze alterations in the transcriptome between mice with AP and animals which were protected against AP. The intracellular domain (ICD) of ERBB4 was analyzed in different cell compartments. RESULTS: While the pancreas of BTC transgenic mice in the background of EgfrWa5/+ is still protected against AP, the BTC-mediated protection is no longer present in the absence of ERBB4. We further demonstrate that BTC activates the ICD of ERBB4, and increases the expression of the extracellular matrix (ECM) proteins periostin and matrix gla protein as well as the ECM modulators matrix metalloproteinases 2 and 3, but only in the presence of ERBB4. Notably, the increased expression of these proteins is not accompanied by an increased ECM amount. CONCLUSIONS: These findings suggest that BTC derivates, as a drug, or the ERBB4 receptor, as a druggable target protein, could play an important role in modulating the course of AP and even prevent AP in humans.


Subject(s)
Betacellulin/pharmacology , ErbB Receptors/genetics , Pancreatitis/prevention & control , Receptor, ErbB-4/genetics , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Knockout , Mice, Transgenic , Pancreatitis/genetics
4.
Int J Obes (Lond) ; 44(5): 1185-1190, 2020 05.
Article in English | MEDLINE | ID: mdl-31776435

ABSTRACT

BACKGROUND: Obesity is a global rising problem with epidemiological dimension. Obese parents can have programming effects on their offspring leading to obesity and associated diseases in later life. This constitutes a vicious circle. Epidemiological data and studies in rodents demonstrated differential programming effects in male and female offspring, but the timing of their developmental origin is not known. METHODS: This study investigated if sex-specific programming effects of parental obesity can already be detected in the pre-implantation period. Diet-induced obese male or female mice were mated with normal-weight partners and blastocysts were recovered. RESULTS: Gene expression profiling revealed sex-specific responses of the blastocyst transcriptome to maternal and paternal obesity. The changes in the transcriptome of male blastocysts were more pronounced than those of female blastocysts, with a stronger impact of paternal than of maternal obesity. The sperm of obese mice revealed an increased abundance of several miRNAs compared with lean mice. CONCLUSIONS: Our study indicates that sex-specific programming effects of parental obesity already start in the pre-implantation period and reveals specific alterations of the sperm miRNA profile as mechanistic link to programming effects of paternal obesity.


Subject(s)
Embryonic Development/genetics , Obesity/genetics , Transcriptome/genetics , Animals , Blastocyst/metabolism , Female , Male , Mice , Mice, Obese , Pregnancy , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...