Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Am J Med Genet A ; 191(5): 1261-1272, 2023 05.
Article in English | MEDLINE | ID: mdl-36797513

ABSTRACT

You-Hoover-Fong syndrome (YHFS) is an autosomal recessive condition caused by pathogenic variants in the TELO2 gene. Affected individuals were reported to have global developmental delay, intellectual disability, microcephaly, dysmorphic facial features, ocular involvement including cortical visual impairment, strabismus, cataract and rotatory nystagmus, movement disorder, hypertonia and spasticity, balance disturbance and ataxia, and abnormal sleep pattern. Other features reported include poor growth, cleft palate, cardiac malformations, epilepsy, scoliosis, and hearing loss. To date, 12 individuals with YHFS have been reported in the literature. Here we describe 14 new individuals with YHFS from 10 families. Their clinical presentation provides additional support of the phenotype recognized previously and delineates the clinical spectrum associated with YHFS syndrome. In addition, we present a review of the literature including follow-up data on four previously reported individuals with YHFS.


Subject(s)
Brain Diseases , Epilepsy , Intellectual Disability , Microcephaly , Humans , Brain Diseases/complications , Epilepsy/complications , Intellectual Disability/pathology , Microcephaly/pathology , Syndrome
2.
J Rheumatol ; 49(4): 408-418, 2022 04.
Article in English | MEDLINE | ID: mdl-35105707

ABSTRACT

OBJECTIVE: To develop best practice statements for the provision of virtual care in adult and pediatric rheumatology for the Canadian Rheumatology Association's (CRA) Telehealth Working Group (TWG). METHODS: Four members of the TWG representing adult, pediatric, university-based, and community rheumatology practices defined the scope of the project. A rapid literature review of existing systematic reviews, policy documents, and published literature and abstracts on the topic was conducted between April and May 2021. The review informed a candidate set of 7 statements and a supporting document. The statements were submitted to a 3-round (R) modified Delphi process with 22 panelists recruited through the CRA and patient advocacy organizations. Panelists rated the importance and feasibility of the statements on a Likert scale of 1-9. Statements with final median ratings between 7-9 with no disagreement were retained in the final set. RESULTS: Twenty-one (95%) panelists participated in R1, 15 (71%) in R2, and 18 (82%) in R3. All but 1 statement met inclusion criteria during R1. Revisions were made to 5/7 statements following R2 and an additional statement was added. All statements met inclusion criteria following R3. The statements addressed the following themes in the provision of virtual care: adherence to existing standards and regulations, appropriateness, consent, physical examination, patient-reported outcomes, use in addition to in-person visits, and complex comanagement of disease. CONCLUSION: The best practice statements represent a starting point for advancing virtual care in rheumatology. Future educational efforts to help implement these best practices and research to address identified knowledge gaps are planned.


Subject(s)
Rheumatology , Canada , Consensus , Delphi Technique , Humans
3.
Am J Hum Genet ; 107(3): 564-574, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32822602

ABSTRACT

KAT5 encodes an essential lysine acetyltransferase, previously called TIP60, which is involved in regulating gene expression, DNA repair, chromatin remodeling, apoptosis, and cell proliferation; but it remains unclear whether variants in this gene cause a genetic disease. Here, we study three individuals with heterozygous de novo missense variants in KAT5 that affect normally invariant residues, with one at the chromodomain (p.Arg53His) and two at or near the acetyl-CoA binding site (p.Cys369Ser and p.Ser413Ala). All three individuals have cerebral malformations, seizures, global developmental delay or intellectual disability, and severe sleep disturbance. Progressive cerebellar atrophy was also noted. Histone acetylation assays with purified variant KAT5 demonstrated that the variants decrease or abolish the ability of the resulting NuA4/TIP60 multi-subunit complexes to acetylate the histone H4 tail in chromatin. Transcriptomic analysis in affected individual fibroblasts showed deregulation of multiple genes that control development. Moreover, there was also upregulated expression of PER1 (a key gene involved in circadian control) in agreement with sleep anomalies in all of the individuals. In conclusion, dominant missense KAT5 variants cause histone acetylation deficiency with transcriptional dysregulation of multiples genes, thereby leading to a neurodevelopmental syndrome with sleep disturbance, cerebellar atrophy, and facial dysmorphisms, and suggesting a recognizable syndrome.


Subject(s)
Atrophy/genetics , Cerebellar Diseases/genetics , Intellectual Disability/genetics , Lysine Acetyltransferase 5/genetics , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/genetics , Abnormalities, Multiple/physiopathology , Adolescent , Adult , Atrophy/diagnostic imaging , Atrophy/physiopathology , Cerebellar Diseases/diagnostic imaging , Cerebellar Diseases/physiopathology , Child, Preschool , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , DNA Repair/genetics , Epilepsy/diagnostic imaging , Epilepsy/genetics , Epilepsy/physiopathology , Female , Heterozygote , Histones/genetics , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/physiopathology , Male , Mutation, Missense/genetics , Protein Processing, Post-Translational/genetics
4.
Genet Med ; 22(5): 974-978, 2020 05.
Article in English | MEDLINE | ID: mdl-31965078

ABSTRACT

PURPOSE: Exome sequencing (ES) is increasingly used for the diagnosis of rare genetic disease. However, some pathogenic sequence variants within the exome go undetected due to the technical difficulty of identifying them. Mobile element insertions (MEIs) are a known cause of genetic disease in humans but have been historically difficult to detect via ES and similar targeted sequencing methods. METHODS: We developed and applied a novel MEI detection method prospectively to samples received for clinical ES beginning in November 2017. Positive MEI findings were confirmed by an orthogonal method and reported back to the ordering provider. In this study, we examined 89,874 samples from 38,871 cases. RESULTS: Diagnostic MEIs were present in 0.03% (95% binomial test confidence interval: 0.02-0.06%) of all cases and account for 0.15% (95% binomial test confidence interval: 0.08-0.25%) of cases with a molecular diagnosis. One diagnostic MEI was a novel founder event. Most patients with pathogenic MEIs had prior genetic testing, three of whom had previous negative DNA sequencing analysis of the diagnostic gene. CONCLUSION: MEI detection from ES is a valuable diagnostic tool, reveals molecular findings that may be undetected by other sequencing assays, and increases diagnostic yield by 0.15%.


Subject(s)
Exome , Genetic Testing , Exome/genetics , Humans , Sequence Analysis, DNA , Exome Sequencing
5.
Article in English | MEDLINE | ID: mdl-31167805

ABSTRACT

Heterozygous deleterious variants in PHIP have been associated with behavioral problems, intellectual disability/developmental delay, obesity/overweight, and dysmorphic features (BIDOD syndrome). We report an additional 10 individuals with pleckstrin homology domain-interacting protein (PHIP)-predicted deleterious variants (four frameshift, three missense, two nonsense, and one splice site; six of which are confirmed de novo). The mutation spectrum is diverse, and there is no clustering of mutations across the protein. The clinical phenotype of these individuals is consistent with previous reports and includes behavioral problems, intellectual disability, developmental delay, hypotonia, and dysmorphic features. The additional individuals we report have a lower frequency of obesity than previous reports and a higher frequency of gastrointestinal problems, social deficits, and behavioral challenges. Characterizing additional individuals with diverse mutations longitudinally will provide better natural history data to assist with medical management and educational and behavioral support.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Abnormalities, Multiple/genetics , Adolescent , Child , Child, Preschool , Developmental Disabilities/genetics , Exome/genetics , Female , Frameshift Mutation/genetics , Heterozygote , Humans , Imidazoles , Infant , Intellectual Disability/genetics , Male , Muscle Hypotonia/genetics , Mutation/genetics , Phenotype , Transcription Factors/genetics , Exome Sequencing/methods
6.
J Med Genet ; 55(8): 561-566, 2018 08.
Article in English | MEDLINE | ID: mdl-28866611

ABSTRACT

BACKGROUND: The list of Mendelian disorders of the epigenetic machinery has expanded rapidly during the last 5 years. A few missense variants in the chromatin remodeler CHD1 have been found in several large-scale sequencing efforts focused on uncovering the genetic aetiology of autism. OBJECTIVES: To explore whether variants in CHD1 are associated with a human phenotype. METHODS: We used GeneMatcher to identify other physicians caring for patients with variants in CHD1. We also explored the epigenetic consequences of one of these variants in cultured fibroblasts. RESULTS: Here we describe six CHD1 heterozygous missense variants in a cohort of patients with autism, speech apraxia, developmental delay and facial dysmorphic features. Importantly, three of these variants occurred de novo. We also report on a subject with a de novo deletion covering a large fraction of the CHD1 gene without any obvious neurological phenotype. Finally, we demonstrate increased levels of the closed chromatin modification H3K27me3 in fibroblasts from a subject carrying a de novo variant in CHD1. CONCLUSIONS: Our results suggest that variants in CHD1 can lead to diverse phenotypic outcomes; however, the neurodevelopmental phenotype appears to be limited to patients with missense variants, which is compatible with a dominant negative mechanism of disease.


Subject(s)
Chromatin Assembly and Disassembly/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Developmental Disabilities/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation, Missense , Child , Child, Preschool , DNA Helicases/chemistry , DNA-Binding Proteins/chemistry , Developmental Disabilities/diagnosis , Facies , Female , Fibroblasts/metabolism , Genetic Association Studies/methods , Histones/metabolism , Humans , Infant , Models, Molecular , Phenotype , Protein Conformation , Structure-Activity Relationship
7.
Am J Hum Genet ; 102(1): 27-43, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29276006

ABSTRACT

Locus heterogeneity characterizes a variety of skeletal dysplasias often due to interacting or overlapping signaling pathways. Robinow syndrome is a skeletal disorder historically refractory to molecular diagnosis, potentially stemming from substantial genetic heterogeneity. All current known pathogenic variants reside in genes within the noncanonical Wnt signaling pathway including ROR2, WNT5A, and more recently, DVL1 and DVL3. However, ∼70% of autosomal-dominant Robinow syndrome cases remain molecularly unsolved. To investigate this missing heritability, we recruited 21 families with at least one family member clinically diagnosed with Robinow or Robinow-like phenotypes and performed genetic and genomic studies. In total, four families with variants in FZD2 were identified as well as three individuals from two families with biallelic variants in NXN that co-segregate with the phenotype. Importantly, both FZD2 and NXN are relevant protein partners in the WNT5A interactome, supporting their role in skeletal development. In addition to confirming that clustered -1 frameshifting variants in DVL1 and DVL3 are the main contributors to dominant Robinow syndrome, we also found likely pathogenic variants in candidate genes GPC4 and RAC3, both linked to the Wnt signaling pathway. These data support an initial hypothesis that Robinow syndrome results from perturbation of the Wnt/PCP pathway, suggest specific relevant domains of the proteins involved, and reveal key contributors in this signaling cascade during human embryonic development. Contrary to the view that non-allelic genetic heterogeneity hampers gene discovery, this study demonstrates the utility of rare disease genomic studies to parse gene function in human developmental pathways.


Subject(s)
Craniofacial Abnormalities/genetics , Dwarfism/genetics , Genetic Heterogeneity , Limb Deformities, Congenital/genetics , Urogenital Abnormalities/genetics , Wnt Signaling Pathway/genetics , Adolescent , Adult , Base Sequence , Child , Child, Preschool , Chromosome Segregation/genetics , Craniofacial Abnormalities/diagnosis , Diagnosis, Differential , Dwarfism/diagnosis , Female , Genes, Dominant , Genetic Association Studies , Humans , Limb Deformities, Congenital/diagnosis , Male , Middle Aged , Mutation, Missense/genetics , Phenotype , Urogenital Abnormalities/diagnosis
8.
J Pediatr Urol ; 14(2): 153.e1-153.e7, 2018 04.
Article in English | MEDLINE | ID: mdl-29157626

ABSTRACT

BACKGROUND: Ambiguous genitalia refers to a form of differences of sex development (DSD) wherein the appearance of the external genitalia is atypical. This rare condition presents challenges in decision-making and clinical management. Review of historical data may reveal areas for clinical research to improve care for patients with ambiguous genitalia. OBJECTIVE: This chart review was performed to identify patients with ambiguous genitalia, and to classify them as having 46,XX DSD, 46,XY DSD, or sex chromosome DSD. Within these categories, we looked at establishment of specific diagnoses, type and frequency of other congenital anomalies and neoplasms, and gender assignment, as well as incidence of gender reassignment and transition. METHODS: We performed a retrospective chart review of patients diagnosed with DSD conditions from 1995 to 2016 using ICD9 codes. For the purpose of this study, review was limited to individuals assessed to have neonatal "ambiguous genitalia" or "indeterminate sex." RESULTS: Review identified 128 patients evaluated for ambiguous genitalia from 22 years of experience (Figure). Approximately half of these (53%) had 46,XY karyotype, 35% had 46,XX, and the remaining 12% had sex chromosome aberrations. Diagnostic rate for 46,XX DSD was higher at 64%, all of which were congenital adrenal hyperplasia, while diagnostic rate for 46,XY DSD was 11.7% for a molecularly confirmed diagnosis and 24% if clinical diagnoses were included. The most common anomalies included cardiac anomalies in 28/128 (22%), skeletal anomalies in 19/128 (15%), and failure to thrive or growth problems in 19/128 (15%). Additional congenital anomalies were found in 53 out of 128 patients (41%). There were three reported neoplasms in this group: gonadoblastoma, hepatoblastoma, and myelodysplastic syndrome with monosomy 7. Gender assignment was consistent with chromosomes in approximately 90% of XX and XY patients. There were three recorded gender reassignments or transitions. DISCUSSION: Diagnostic rate for ambiguous genitalia is low, especially in 46,XY DSD. Most neonates were assigned gender consistent with their chromosomes. Given the high rate of associated anomalies, screening for cardiac or other anomalies in patients with ambiguous genitalia may be beneficial. CONCLUSION: Patients with ambiguous genitalia often have additional congenital anomalies. Establishment of a specific diagnosis is uncommon in 46,XY patients. A few patients have gender reassignment outside of the newborn period. Ongoing collection of clinical data on this population may reveal new information regarding long-term health, quality of life, and establishment of more diagnoses with improved molecular techniques.


Subject(s)
Adrenal Hyperplasia, Congenital/complications , Clinical Decision-Making , Disorders of Sex Development/diagnosis , Disorders of Sex Development/epidemiology , Gonadal Dysgenesis, 46,XY/complications , Academic Medical Centers , Adrenal Hyperplasia, Congenital/diagnosis , Cohort Studies , Databases, Factual , Disorders of Sex Development/etiology , Female , Follow-Up Studies , Gonadal Dysgenesis, 46,XY/diagnosis , Humans , Infant, Newborn , Male , Retrospective Studies , Risk Assessment , Sexual Development/physiology , Time Factors , Treatment Outcome
9.
Am J Med Genet A ; 173(11): 3022-3028, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28941052

ABSTRACT

De novo, germline variants in DNMT3A cause Tatton-Brown-Rahman syndrome (TBRS). This condition is characterized by overgrowth, distinctive facial appearance, and intellectual disability. Somatic DNMT3A variants frequently occur in hematologic malignances, particularly acute myeloid leukemia. The Arg882 residue is the most common site of somatic DNMT3A variants, and has also been altered in patients with TBRS. Here we present three additional patients with this disorder attributed to DNMT3A germline variants that disrupt the Arg882 codon, suggesting that this codon may be a germline mutation hotspot in this disorder. Furthermore, based on the investigation of previously reported variants in patients with TBRS, we found overlap in the spectrum of DNMT3A variants observed in this disorder and somatic variants in hematological malignancies.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Face/physiopathology , Hematologic Neoplasms/genetics , Intellectual Disability/genetics , Codon , DNA Methyltransferase 3A , Female , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Hematologic Neoplasms/pathology , Humans , Intellectual Disability/pathology , Male , Mutation , Phenotype
10.
Genet Med ; 19(9): 1040-1048, 2017 09.
Article in English | MEDLINE | ID: mdl-28252636

ABSTRACT

PURPOSE: Evaluation of the clinician's role in the optimal interpretation of clinical exome sequencing (ES) results. METHODS: Retrospective chart review of the first 155 patients who underwent clinical ES in our Exome Clinic and direct interaction with the ordering geneticist to evaluate the process of interpretation of results. RESULTS: The most common primary indication was neurodevelopmental problems (~66%), followed by multiple congenital anomalies (~10%). Based on sequencing data, the overall diagnostic yield was 36%. After assessment by the medical geneticist, incorporation of detailed phenotypic and molecular data, and utilization of additional diagnostic modalities, the final diagnostic yield increased to 43%. Seven patients in our cohort were included in initial case series that described novel genetic syndromes, and 23% of patients were involved in subsequent research studies directly related to their results or involved in efforts to move beyond clinical ES for diagnosis. Clinical management was directly altered due to the ES findings in 12% of definitively diagnosed cases. CONCLUSIONS: Our results emphasize the usefulness of ES, demonstrate the significant role of the medical geneticist in the diagnostic process of patients undergoing ES, and illustrate the benefits of postanalytical diagnostic work-up in solving the "diagnostic odyssey." Genet Med advance online publication 02 March 2017.


Subject(s)
Exome Sequencing , Exome , Expert Testimony , Genetic Testing , Genetics, Medical , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Counseling , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetics, Medical/methods , Humans , Infant , Infant, Newborn , Male , Physicians , Retrospective Studies , Young Adult
11.
Hum Genome Var ; 3: 16012, 2016.
Article in English | MEDLINE | ID: mdl-27340555

ABSTRACT

Small copy number variations (CNVs) have typically not been analyzed or reported in clinical settings and hence have remained underrepresented in databases and the literature. Here, we focused our investigations on these small CNVs using chromosome microarray analysis (CMA) data previously obtained from patients with atypical characteristics or disorders of sex development (DSD). Using our customized CMA track targeting 334 genes involved in the development of urogenital and reproductive structures and a less stringent analysis filter, we uncovered small genes with recurrent and overlapping CNVs as small as 1 kb, and small regions of homozygosity (ROHs), imprinting and position effects. Detailed analysis of these high-resolution data revealed CNVs and ROHs involving structural and functional domains, repeat elements, active transcription sites and regulatory regions. Integration of these genomic data with DNA methylation, histone modification and predicted RNA expression profiles in normal testes and ovaries suggested spatiotemporal and tissue-specific gene regulation. This study emphasized a DSD-specific and gene-targeted CMA approach that uncovered previously unanalyzed or unreported small genes and CNVs, contributing to the growing resources on small CNVs and facilitating the narrowing of the genomic gap for identifying candidate genes or regions. This high-resolution analysis tool could improve the diagnostic utility of CMA, not only in patients with DSD but also in other clinical populations. These integrated data provided a better genomic-epigenomic landscape of DSD and greater opportunities for downstream research.

12.
Am J Med Genet A ; 167A(4): 816-20, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25707956

ABSTRACT

NGLY1-related disorder is a newly described autosomal recessive condition characterized by neurological, hepatic, ophthalmological findings and associated with dysmorphic features, constipation and scoliosis. It is caused by mutations in NGLY1, which encodes an enzyme, N-glycanase 1, involved in deglycosylation of glycoproteins, an essential step in the endoplasmic reticulum-associated degradation (ERAD) pathway. The disorder has been described in eight patients. We investigated the molecular basis and phenotype of NGLY1-related disorder in an additional patient. The proband is a 14-year-old who presented in early infancy with profound hypotonia and elevated transaminases. Liver biopsy showed lipid accumulation with dilated endoplasmic reticulum. He exhibited global developmental delay, acquired microcephaly, seizures, involuntary body movements, muscle atrophy, absent reflexes, and poor growth. He had multiple procedures for lacrimal duct stenosis and strabismus and had intractable blepharitis. He had severe osteopenia and persistent hypocholesterolemia. Whole exome sequencing revealed two novel variants in NGLY1: a truncating mutation, c.347C > G (p.S116X), and a splicing mutation, c.881 + 5G (p.IVS5 + 5G>T), predicted to abolish the splice donor site of exon 5. This study, along with previously reported cases, suggests that mutations in NGLY1 cause a recognizable phenotype and targeted sequencing should be considered in patients with typical presentation. This study expands the molecular spectrum of NGLY1-related condition and suggests that osteopenia and hypocholesterolemia may be part of the phenotype.


Subject(s)
Abnormalities, Multiple/diagnosis , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/genetics , Abnormalities, Multiple/genetics , Adolescent , DNA Mutational Analysis , Humans , Male , Mutation
13.
Biol Reprod ; 71(3): 871-7, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15128592

ABSTRACT

TRAIL (tumor necrosis factor [TNF]-related apoptosis-inducing ligand) and KILLER are a death-inducing ligand and receptor pair that belong to the TNF and TNF-receptor superfamilies, respectively. To date, only one apoptosis-inducing TRAIL receptor (murine KILLER [MK]) has been identified in mice, and it is a homologue of human Death Receptor 5. Whereas the expression of other death receptors, such as Fas and TNF receptor 1 have been documented in mammalian preimplantation embryos, no evidence currently demonstrates either the presence or the function of TRAIL and its corresponding death receptor, MK. Using reverse transcription-polymerase chain reaction and confocal immunofluorescent microscopy, we found that both TRAIL and MK are expressed from the 1-cell through the blastocyst stage of murine preimplantation embryo development. These proteins are localized mainly at the cell surface from the 1-cell through the morula stage. At the blastocyst stage, both TRAIL and MK exhibit an apical staining pattern in the trophectoderm cells. Finally, using the TUNEL assay, we demonstrated that MK induces apoptosis in blastocysts sensitized to TRAIL via actinomycin D. Taken together, these data are the first to demonstrate the presence and function of TRAIL and MK, a death-inducing ligand and its receptor, in mammalian preimplantation embryos.


Subject(s)
Apoptosis/physiology , Blastocyst/physiology , Membrane Glycoproteins/genetics , Receptors, Tumor Necrosis Factor/genetics , Tumor Necrosis Factor-alpha/genetics , Animals , Apoptosis Regulatory Proteins , Blastocyst/cytology , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Developmental , In Situ Nick-End Labeling , Ligands , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred Strains , Receptors, TNF-Related Apoptosis-Inducing Ligand , Receptors, Tumor Necrosis Factor/metabolism , TNF-Related Apoptosis-Inducing Ligand , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...