Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 341: 117903, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37146489

ABSTRACT

Escalated wildfire activity within the western U.S. has widespread societal impacts and long-term consequences for the imperiled sagebrush (Artemisia spp.) biome. Shifts from historical fire regimes and the interplay between frequent disturbance and invasive annual grasses may initiate permanent state transitions as wildfire frequency outpaces sagebrush communities' innate capacity to recover. Therefore, wildfire management is at the core of conservation plans for sagebrush ecosystems, especially critical habitat for species of conservation concern such as the greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse). Fuel breaks help facilitate wildfire suppression by modifying behavior through fuels modification and allowing safe access points for containment by firefighters. The Bureau of Land Management has proposed to roughly double the existing fuel break network in the western U.S., centered on the Great Basin. To our knowledge, no broad-scale examination of fuel break effectiveness or the environmental conditions under which fuel breaks are expected to be most effective has been conducted. We performed a retrospective assessment of probability of fuel break contributing to wildfire containment on recorded wildfire and fuel break interactions from 1985 to 2018 within the western U.S. We characterized environmental, fuels, and weather conditions within 500 m of wildfire contact, and within 5 km of the approaching wildfire. We used a binomial mixed model within a Bayesian framework to identify relationships between these variables and fuel break success. Fuel breaks were least successful in areas classified as having low resilience to disturbance and low resistance to invasion, in areas composed of primarily woody fuels, and when operating in high temperature and low precipitation conditions. Fuel breaks were most effective in areas where fine fuels dominated and in areas that were readily accessible. Maintenance history and fuel break type also contributed to the probability of containment. Overall results indicate a complex and sometimes paradoxical relationship between landscape characteristics that promote wildfire spread and those that impact fuel break effectiveness. Finally, we developed predictive maps of fuel break effectiveness by fuel break type to further elucidate these complex relationships and to inform urgently needed fuel break placement and maintenance priorities across the sagebrush biome.


Subject(s)
Artemisia , Wildfires , Ecosystem , Bayes Theorem , Retrospective Studies
2.
Ecol Evol ; 12(12): e9565, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36466138

ABSTRACT

Wildlife populations are increasingly affected by natural and anthropogenic changes that negatively alter biotic and abiotic processes at multiple spatiotemporal scales and therefore require increased wildlife management and conservation efforts. However, wildlife management boundaries frequently lack biological context and mechanisms to assess demographic data across the multiple spatiotemporal scales influencing populations. To address these limitations, we developed a novel approach to define biologically relevant subpopulations of hierarchically nested population levels that could facilitate managing and conserving wildlife populations and habitats. Our approach relied on the Spatial "K"luster Analysis by Tree Edge Removal clustering algorithm, which we applied in an agglomerative manner (bottom-to-top). We modified the clustering algorithm using a workflow and population structure tiers from least-cost paths, which captured biological inferences of habitat conditions (functional connectivity), dispersal capabilities (potential connectivity), genetic information, and functional processes affecting movements. The approach uniquely included context of habitat resources (biotic and abiotic) summarized at multiple spatial scales surrounding locations with breeding site fidelity and constraint-based rules (number of sites grouped and population structure tiers). We applied our approach to greater sage-grouse (Centrocercus urophasianus), a species of conservation concern, across their range within the western United States. This case study produced 13 hierarchically nested population levels (akin to cluster levels, each representing a collection of subpopulations of an increasing number of breeding sites). These closely approximated population closure at finer ecological scales (smaller subpopulation extents with fewer breeding sites; cluster levels ≥2), where >92% of individual sage-grouse's time occurred within their home cluster. With available population monitoring data, our approaches can support the investigation of factors affecting population dynamics at multiple scales and assist managers with making informed, targeted, and cost-effective decisions within an adaptive management framework. Importantly, our approach provides the flexibility of including species-relevant context, thereby supporting other wildlife characterized by site fidelity.

3.
Land (Basel) ; 11(8): 1-16, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36211983

ABSTRACT

As fire frequency and severity grow throughout the world, scientists working across a range of disciplines will increasingly need to incorporate wildfire models into their research. However, fire simulators tend to be highly complex, time-consuming to learn, and difficult to parameterize. As a result, embracing these models can prove impractical for scientists and practitioners who are not fire specialists. Here we introduce a parsimonious wildfire simulator named HexFire that has been designed for rapid uptake by investigators who do not specialize in the mechanics of fire spread. HexFire should be useful to such nonspecialists for representing the spread of fire, interactions with fuel breaks, and for integrating wildfire into other types of ecological models. We provide a detailed description of the HexFire simulator's design and mechanisms. Our heuristic fire spread examples highlight the flexibility inherent in the model system, demonstrate that HexFire can generate a wide range of emergent fire behaviors, and illustrate how HexFire might be coupled with other environmental models. We also describe ways that HexFire itself might be altered or augmented. HexFire can be used as a proxy for more detailed fire simulators and to assess the implications of wildfire for local ecological systems. HexFire can also simulate fire interactions with fuel breaks and active fire suppression.

4.
Environ Manage ; 70(2): 288-306, 2022 08.
Article in English | MEDLINE | ID: mdl-35687203

ABSTRACT

Unprecedented conservation efforts for sagebrush (Artemisia spp.) ecosystems across the western United States have been catalyzed by risks from escalated wildfire activity that reduces habitat for sagebrush-obligate species such as Greater Sage-Grouse (Centrocercus urophasianus). However, post-fire restoration is challenged by spatial variation in ecosystem processes influencing resilience to disturbance and resistance to non-native invasive species, and spatial and temporal lags between slower sagebrush recovery processes and faster demographic responses of sage-grouse to loss of important habitat. Decision-support frameworks that account for these factors can help users strategically apply restoration efforts by predicting short and long-term ecological benefits of actions. Here, we developed a framework that strategically targets burned areas for restoration actions (e.g., seeding or planting sagebrush) that have the greatest potential to positively benefit sage-grouse populations through time. Specifically, we estimated sagebrush recovery following wildfire and risk of non-native annual grass invasion under four scenarios: passive recovery, grazing exclusion, active restoration with seeding, and active restoration with seedling transplants. We then applied spatial predictions of integrated nest site selection and survival models before wildfire, immediately following wildfire, and at 30 and 50 years post-wildfire based on each restoration scenario and measured changes in habitat. Application of this framework coupled with strategic planting designs aimed at developing patches of nesting habitat may help increase operational resilience for fire-impacted sagebrush ecosystems.


Subject(s)
Artemisia , Environmental Restoration and Remediation , Galliformes , Wildfires , Animals , Ecosystem , Galliformes/physiology , Nesting Behavior
5.
Ecol Appl ; 29(6): e01912, 2019 09.
Article in English | MEDLINE | ID: mdl-31310420

ABSTRACT

Multiple environmental stressors impact wildlife populations, but we often know little about their cumulative and combined influences on population outcomes. We generally know more about past effects than potential future impacts, and direct influences such as changes of habitat footprints than indirect, long-term responses in behavior, distribution, or abundance. Yet, an understanding of all these components is needed to plan for future landscapes that include human activities and wildlife. We developed a case study to assess how spatially explicit individual-based modeling could be used to evaluate future population outcomes of gradual landscape change from multiple stressors. For Greater Sage-grouse in southwest Wyoming, USA, we projected oil and gas development footprints and climate-induced vegetation changes 50 years into the future. Using a time-series of planned oil and gas development and predicted climate-induced changes in vegetation, we recalculated habitat selection maps to dynamically modify future habitat quantity, quality, and configuration. We simulated long-term Sage-grouse responses to habitat change by allowing individuals to adjust to shifts in habitat availability and quality. The use of spatially explicit individual-based modeling offered a useful means of evaluating delayed indirect impacts of landscape change on wildlife population outcomes. The inclusion of movement and demographic responses to oil and gas infrastructure resulted in substantive changes in distribution and abundance when cumulated over several decades and throughout the regional population. When combined, additive development and climate-induced vegetation changes reduced abundance by up to half of the original size. In our example, the consideration of only a single population stressor the final possible population size by as much as 50%. Multiple stressors and their cumulative impacts need to be broadly considered through space and time to avoid underestimating the impacts of multiple gradual changes and overestimating the ability of populations to withstand change.


Subject(s)
Conservation of Natural Resources , Galliformes , Animals , Climate , Ecosystem , Wyoming
6.
Conserv Biol ; 32(3): 648-659, 2018 06.
Article in English | MEDLINE | ID: mdl-29193292

ABSTRACT

For species at risk of decline or extinction in source-sink systems, sources are an obvious target for habitat protection actions. However, the way in which source habitats are identified and prioritized can reduce the effectiveness of conservation actions. Although sources and sinks are conceptually defined using both demographic and movement criteria, simplifications are often required in systems with limited data. To assess the conservation outcomes of alternative source metrics and resulting prioritizations, we simulated population dynamics and extinction risk for 3 endangered species. Using empirically based habitat population models, we linked habitat maps with measured site- or habitat-specific demographic conditions, movement abilities, and behaviors. We calculated source-sink metrics over a range of periods of data collection and prioritized consistently high-output sources for conservation. We then tested whether prioritized patches identified the habitats that most affected persistence by removing them and measuring the population response. Conservation decisions based on different source-sink metrics and durations of data collection affected species persistence. Shorter time series obscured the ability of metrics to identify influential habitats, particularly in temporally variable and slowly declining populations. Data-rich source-sink metrics that included both demography and movement information did not always identify the habitats with the greatest influence on extinction risk. In some declining populations, patch abundance better predicted influential habitats for short-term regional persistence. Because source-sink metrics (i.e., births minus deaths; births and immigrations minus deaths and emigration) describe net population conditions and cancel out gross population counts, they may not adequately identify influential habitats in declining populations. For many nonequilibrium populations, new metrics that maintain the counts of individual births, deaths, and movement may provide additional insight into habitats that most influence persistence.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Demography , Endangered Species , Population Dynamics
7.
Ecol Evol ; 6(4): 892-904, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26941935

ABSTRACT

Many factors affect the presence and exchange of individuals among subpopulations and influence not only the emergence, but the strength of ensuing source-sink dynamics within metapopulations. Yet their relative contributions remain largely unexplored. To help identify the characteristics of empirical systems that are likely to exhibit strong versus weak source-sink dynamics and inform their differential management, we compared the relative roles of influential factors in strengthening source-sink dynamics. In a series of controlled experiments within a spatially explicit individual-based model framework, we varied patch quality, patch size, the dispersion of high- and low-quality patches, population growth rates, dispersal distances, and environmental stochasticity in a factorial design. We then recorded source-sink dynamics that emerged from the simulated habitat and population factors. Long-term differences in births and deaths were quantified for sources and sinks in each system and used in a statistical model to rank the influences of key factors. Our results suggest that systems with species capable of rapid growth, occupying habitat patches with more disparate qualities, with interspersed higher- and lower-quality habitats, and that experience relatively stable environments (i.e., fewer negative perturbations) are more likely to exhibit strong source-sink dynamics. Strong source-sink dynamics emerged under diverse combinations of factors, suggesting that simple inferences of process from pattern will likely be inadequate to predict and assess the strength of source-sink dynamics. Our results also suggest that it may be more difficult to detect and accurately measure source-sink dynamics in slow-growing populations, highly variable environments, and where a subtle gradient of habitat quality exists.

8.
Conserv Biol ; 29(6): 1674-83, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26032147

ABSTRACT

Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks to regional population persistence of declining populations, we simulated source-sink dynamics for 3 very different endangered species: Black-capped Vireos (Vireo atricapilla) at Fort Hood, Texas, Ord's kangaroo rats (Dipodomys ordii) in Alberta, and Northern Spotted Owls (Strix occidentalis caurina) in the northwestern United States. We used empirical data from these case studies to parameterize spatially explicit individual-based models. We then used the models to quantify population abundance and persistence with and without long-term sinks. The contributions of sink habitats varied widely. Sinks were detrimental, particularly when they functioned as strong sinks with few emigrants in declining populations (e.g., Alberta's Ord's kangaroo rat) and benign in robust populations (e.g., Black-capped Vireos) when Brown-headed Cowbird (Molothrus ater) parasitism was controlled. Sinks, including ecological traps, were also crucial in delaying declines when there were few sources (e.g., in Black-capped Vireo populations with no Cowbird control). Sink contributions were also nuanced. For example, sinks that supported large, variable populations were subject to greater extinction risk (e.g., Northern Spotted Owls). In each of our case studies, new context-dependent sinks emerged, underscoring the dynamic nature of sources and sinks and the need for frequent re-assessment. Our results imply that management actions based on assumptions that sink habitats are generally harmful or helpful risk undermining conservation efforts for declining populations.


Subject(s)
Conservation of Natural Resources , Dipodomys/physiology , Ecosystem , Endangered Species , Songbirds/physiology , Strigiformes/physiology , Alberta , Animals , Female , Male , Models, Biological , Northwestern United States , Population Dynamics , Texas
SELECTION OF CITATIONS
SEARCH DETAIL