Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Signal ; 17(835): eadj0032, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713765

Serum response factor (SRF) is an essential transcription factor for brain development and function. Here, we explored how an SRF cofactor, the actin monomer-sensing myocardin-related transcription factor MRTF, is regulated in mouse cortical neurons. We found that MRTF-dependent SRF activity in vitro and in vivo was repressed by cyclase-associated protein CAP1. Inactivation of the actin-binding protein CAP1 reduced the amount of actin monomers in the cytoplasm, which promoted nuclear MRTF translocation and MRTF-SRF activation. This function was independent of cofilin1 and actin-depolymerizing factor, and CAP1 loss of function in cortical neurons was not compensated by endogenous CAP2. Transcriptomic and proteomic analyses of cerebral cortex lysates from wild-type and Cap1 knockout mice supported the role of CAP1 in repressing MRTF-SRF-dependent signaling in vivo. Bioinformatic analysis identified likely MRTF-SRF target genes, which aligned with the transcriptomic and proteomic results. Together with our previous studies that implicated CAP1 in axonal growth cone function as well as the morphology and plasticity of excitatory synapses, our findings establish CAP1 as a crucial actin regulator in the brain relevant for formation of neuronal networks.


Actins , Cerebral Cortex , Microfilament Proteins , Serum Response Factor , Trans-Activators , Transcription Factors , Animals , Mice , Actins/metabolism , Actins/genetics , Carrier Proteins , Cerebral Cortex/metabolism , Gene Expression Regulation , Mice, Knockout , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Neurons/metabolism , Serum Response Factor/metabolism , Serum Response Factor/genetics , Signal Transduction , Trans-Activators/metabolism , Trans-Activators/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Eur J Cell Biol ; 102(4): 151357, 2023 Dec.
Article En | MEDLINE | ID: mdl-37634312

Dendritic spines form the postsynaptic compartment of most excitatory synapses in the vertebrate brain. Morphological changes of dendritic spines contribute to major forms of synaptic plasticity such as long-term potentiation (LTP) or depression (LTD). Synaptic plasticity underlies learning and memory, and defects in synaptic plasticity contribute to the pathogeneses of human brain disorders. Hence, deciphering the molecules that drive spine remodeling during synaptic plasticity is critical for understanding the neuronal basis of physiological and pathological brain function. Since actin filaments (F-actin) define dendritic spine morphology, actin-binding proteins (ABP) that accelerate dis-/assembly of F-actin moved into the focus as critical regulators of synaptic plasticity. We recently identified cyclase-associated protein 1 (CAP1) as a novel actin regulator in neurons that cooperates with cofilin1, an ABP relevant for synaptic plasticity. We therefore hypothesized a crucial role for CAP1 in structural synaptic plasticity. By exploiting mouse hippocampal neurons, we tested this hypothesis in the present study. We found that induction of both forms of synaptic plasticity oppositely altered concentration of exogenous, myc-tagged CAP1 in dendritic spines, with chemical LTP (cLTP) decreasing and chemical LTD (cLTD) increasing it. cLTP induced spine enlargement in CAP1-deficient neurons. However, it did not increase the density of large spines, different from control neurons. cLTD induced spine retraction and spine size reduction in control neurons, but not in CAP1-KO neurons. Together, we report that postsynaptic myc-CAP1 concentration oppositely changed during cLTP and cTLD and that CAP1 inactivation modestly affected structural plasticity.


Actins , Dendritic Spines , Animals , Humans , Mice , Actins/metabolism , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/metabolism , Dendritic Spines/metabolism , Hippocampus/metabolism , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Synapses/metabolism
4.
Cell Mol Life Sci ; 79(11): 558, 2022 Oct 20.
Article En | MEDLINE | ID: mdl-36264429

The vast majority of excitatory synapses are formed on small dendritic protrusions termed dendritic spines. Dendritic spines vary in size and density that are crucial determinants of excitatory synaptic transmission. Aberrations in spine morphogenesis can compromise brain function and have been associated with neuropsychiatric disorders. Actin filaments (F-actin) are the major structural component of dendritic spines, and therefore, actin-binding proteins (ABP) that control F-actin dis-/assembly moved into the focus as critical regulators of brain function. Studies of the past decade identified the ABP cofilin1 as a key regulator of spine morphology, synaptic transmission, and behavior, and they emphasized the necessity for a tight control of cofilin1 to ensure proper brain function. Here, we report spine enrichment of cyclase-associated protein 1 (CAP1), a conserved multidomain protein with largely unknown physiological functions. Super-resolution microscopy and live cell imaging of CAP1-deficient hippocampal neurons revealed impaired synaptic F-actin organization and dynamics associated with alterations in spine morphology. Mechanistically, we found that CAP1 cooperates with cofilin1 in spines and that its helical folded domain is relevant for this interaction. Moreover, our data proved functional interdependence of CAP1 and cofilin1 in control of spine morphology. In summary, we identified CAP1 as a novel regulator of the postsynaptic actin cytoskeleton that is essential for synaptic cofilin1 activity.


Actins , Dendritic Spines , Actins/metabolism , Dendritic Spines/physiology , Actin Cytoskeleton/metabolism , Synapses/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Synapsins/metabolism
5.
RNA Biol ; 18(9): 1252-1264, 2021 09.
Article En | MEDLINE | ID: mdl-33030396

SYNCRIP, a member of the cellular heterogeneous nuclear ribonucleoprotein (hnRNP) family of RNA binding proteins, regulates various aspects of neuronal development and plasticity. Although SYNCRIP has been identified as a component of cytoplasmic RNA granules in dendrites of mammalian neurons, only little is known about the specific SYNCRIP target mRNAs that mediate its effect on neuronal morphogenesis and function. Here, we present a comprehensive characterization of the cytoplasmic SYNCRIP mRNA interactome using iCLIP in primary rat cortical neurons. We identify hundreds of bona fide SYNCRIP target mRNAs, many of which encode for proteins involved in neurogenesis, neuronal migration and neurite outgrowth. From our analysis, the stabilization of mRNAs encoding for components of the microtubule network, such as doublecortin (Dcx), emerges as a novel mechanism of SYNCRIP function in addition to the previously reported control of actin dynamics. Furthermore, we found that SYNCRIP synergizes with pro-neural miRNAs, such as miR-9. Thus, SYNCRIP appears to promote early neuronal differentiation by a two-tier mechanism involving the stabilization of pro-neural mRNAs by direct 3'UTR interaction and the repression of anti-neural mRNAs in a complex with neuronal miRISC. Together, our findings provide a rationale for future studies investigating the function of SYNCRIP in mammalian brain development and disease.


Cytoplasmic Ribonucleoprotein Granules/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Hippocampus/metabolism , Neurons/metabolism , RNA-Induced Silencing Complex/metabolism , 3' Untranslated Regions/genetics , Animals , Cytoplasmic Ribonucleoprotein Granules/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Hippocampus/cytology , MicroRNAs/genetics , Neurons/cytology , RNA-Induced Silencing Complex/genetics , Rats , Rats, Sprague-Dawley
...