Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 19(23): 235604, 2008 Jun 11.
Article in English | MEDLINE | ID: mdl-21825799

ABSTRACT

We present a pulsed laser dewetting technique that produces single nickel catalyst particles from lithographically patterned disks for subsequent carbon nanofiber growth through plasma enhanced chemical vapor deposition. Unlike the case for standard heat treated Ni catalyst disks, for which multiple nickel particles and consequently multiple carbon nanofibers (CNFs) are observed, single vertically aligned CNFs could be obtained from the laser dewetted catalyst. Different laser dewetting parameters were tested in this study, such as the laser energy density and the laser processing time measured by the total number of laser pulses. Various nickel disk radii and thicknesses were attempted and the resultant number of carbon nanofibers was found to be a function of the initial disk dimension and the number of laser pulses.

2.
J Phys Chem B ; 110(10): 4766-71, 2006 Mar 16.
Article in English | MEDLINE | ID: mdl-16526713

ABSTRACT

We report an effective method for the production of ultrasharp vertically oriented silicon nanocones with tip radii as small as 5 nm. These silicon nanostructures were shaped by a high-temperature acetylene and ammonia dc plasma reactive ion etch (RIE) process. Thin-film copper deposited onto Si substrates forms a copper silicide (Cu3Si) during plasma processing, which subsequently acts as a seed material masking the single-crystal cones while the exposed silicon areas are reactive ion etched. In this process, the cone angle is sharpened continually as the structure becomes taller. Furthermore, by lithographically defining the seed material as well as employing an etch barrier material such as titanium, the cone location and substrate topography can be controlled effectively.


Subject(s)
Copper/chemistry , Nanostructures/chemistry , Silicon/chemistry , Acetylene/chemistry , Ammonia/chemistry , Electrochemistry/methods , Microscopy, Electron, Scanning , Nanostructures/ultrastructure , X-Ray Diffraction
3.
Nanotechnology ; 17(22): 5659-68, 2006 Nov 28.
Article in English | MEDLINE | ID: mdl-21727339

ABSTRACT

Rapid and selective molecular exchange across a barrier is essential for emulating the properties of biological membranes. Vertically-aligned carbon nanofibre (VACNF) forests have shown great promise as membrane mimics, owing to their mechanical stability, their ease of integration with microfabrication technologies and the ability to tailor their morphology and surface properties. However, quantifying transport through synthetic membranes having micro- and nanoscale features is challenging. Here, fluorescence recovery after photobleaching (FRAP) is coupled with finite difference and Monte Carlo simulations to quantify diffusive transport in microfluidic structures containing VACNF forests. Anomalous subdiffusion was observed for FITC (hydrodynamic radius of 0.54 nm) diffusion through both VACNFs and SiO(2)-coated VACNFS (oxVACNFs). Anomalous subdiffusion can be attributed to multiple FITC-nanofibre interactions for the case of diffusion through the VACNF forest. Volume crowding was identified as the cause of anomalous subdiffusion in the oxVACNF forest. In both cases the diffusion mode changes to a time-independent, Fickian mode of transport that can be defined by a crossover length (R(CR)). By identifying the space-and time-dependent transport characteristics of the VACNF forest, the dimensional features of membranes can be tailored to achieve predictable molecular exchange.

SELECTION OF CITATIONS
SEARCH DETAIL
...