Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Acad Pathol ; 9(1): 100029, 2022.
Article in English | MEDLINE | ID: mdl-35782704

ABSTRACT

Problems within the Pathology fellowship application process in the US have been recognized and reported for years. Recently, members of the Graduate Medical Education Committee (GMEC) of the Association of Pathology Chairs (APC) and collaborators collected survey data from the residents themselves and the fellowship programs, as represented by both the fellowship program directors (members of the Fellowship Directors Ad Hoc Committee, FDAHC) and the program administrators (members of the Graduate Medical Education Administrators Section, GMEAS). These data are presented and discussed, and potential steps to resolve some of the problems around fellowship applications in pathology are presented.

3.
Cytotherapy ; 20(8): 1089-1101, 2018 08.
Article in English | MEDLINE | ID: mdl-30076070

ABSTRACT

BACKGROUND AIMS: CD1d-restricted invariant natural killer (iNK) T cells are rare regulatory T cells that may contribute to the immune-regulation in allogeneic stem cell transplantation (ASCT). Here, we sought to develop an effective strategy to expand human iNK T cells for use in cell therapy to prevent graft-versus-host disease (GVHD) in ASCT. METHODS: Human iNK T cells were first enriched from peripheral blood mononuclear cells (PBMCs) using magnetic-activated cell sorting separation, then co-cultured with dendritic cells in the presence of agonist glycolipids, alpha-galactosylceramide, for 2 weeks. RESULTS: The single antigenic stimulation reliably expanded iNK T cells to an average of 2.8 × 107 per 5 × 108 PBMCs in an average purity of 98.8% in 2 weeks (N = 24). The expanded iNK T cells contained a significantly higher level of CD4+ and central memory phenotype (CD45RA-CD62L+) compared with freshly isolated iNK T cells, and maintained their ability to produce both Th-1 (interferon [IFN]γ and tumor necrosis factor [TNF]α) and Th-2 type cytokines (interleukin [IL]-4, IL-5 and IL-13) upon antigenic stimulation or stimulation with Phorbol 12-myristate 13-acetate/ionomycin. Interestingly, expanded iNK T cells were highly autoreactive and produced a Th-2 polarized cytokine production profile after being co-cultured with dendritic cells alone without exogenous agonist glycolipid antigen. Lastly, expanded iNK T cells suppressed conventional T-cell proliferation and ameliorated xenograft GVHD (hazard ratio, 0.1266; P < 0.0001). CONCLUSION: We have demonstrated a feasible approach for obtaining ex vivo expanded, highly enriched human iNK T cells for use in adoptive cell therapy to prevent GVHD in ASCT.


Subject(s)
Cell Culture Techniques/methods , Graft vs Host Disease/prevention & control , Immunotherapy, Adoptive , Lymphocyte Activation/physiology , Natural Killer T-Cells/cytology , Natural Killer T-Cells/physiology , Animals , Antigens, Differentiation, T-Lymphocyte/immunology , Cell Proliferation/physiology , Cell- and Tissue-Based Therapy/methods , Cells, Cultured , Feasibility Studies , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Immunotherapy, Adoptive/methods , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Natural Killer T-Cells/immunology , Transplantation, Heterologous , Transplantation, Homologous
4.
Front Immunol ; 9: 3153, 2018.
Article in English | MEDLINE | ID: mdl-30713535

ABSTRACT

Despite substantial advances in the treatment of acute myeloid leukemia (AML), only 30% of patients survive more than 5 years. Therefore, new therapeutics are much needed. Here, we present a novel therapeutic strategy targeting PR1, an HLA-A2 restricted myeloid leukemia antigen. Previously, we have developed and characterized a novel T-cell receptor-like monoclonal antibody (8F4) that targets PR1/HLA-A2 and eliminates AML xenografts by antibody-dependent cellular cytotoxicity (ADCC). To improve the potency of 8F4, we adopted a strategy to link T-cell cytotoxicity with a bi-specific T-cell-engaging antibody that binds PR1/HLA-A2 on leukemia and CD3 on neighboring T-cells. The 8F4 bi-specific antibody maintained high affinity and specific binding to PR1/HLA-A2 comparable to parent 8F4 antibody, shown by flow cytometry and Bio-Layer Interferometry. In addition, 8F4 bi-specific antibody activated donor T-cells in the presence of HLA-A2+ primary AML blasts and cell lines in a dose dependent manner. Importantly, activated T-cells lysed HLA-A2+ primary AML blasts and cell lines after addition of 8F4 bi-specific antibody. In conclusion, our studies demonstrate the therapeutic potential of a novel bi-specific antibody targeting the PR1/HLA-A2 leukemia-associated antigen, justifying further clinical development of this strategy.


Subject(s)
Antibodies, Bispecific/immunology , Antigens, Neoplasm/immunology , HLA-A2 Antigen/immunology , Leukemia, Myeloid, Acute/immunology , T-Lymphocytes/immunology , Animals , Antibodies, Bispecific/pharmacology , Antibody Specificity/immunology , Antigens, Neoplasm/metabolism , CHO Cells , Cell Line , Cricetulus , Cytotoxicity, Immunologic , HLA-A2 Antigen/metabolism , Humans , Immunotherapy, Adoptive , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Lymphocyte Activation , Protein Binding , T-Lymphocytes/metabolism
5.
J Biol Chem ; 292(24): 10295-10305, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28468826

ABSTRACT

Neutrophil elastase (NE) can be rapidly taken up by tumor cells that lack endogenous NE expression, including breast cancer, which results in cross-presentation of PR1, an NE-derived HLA-A2-restricted peptide that is an immunotherapy target in hematological and solid tumor malignancies. The mechanism of NE uptake, however, remains unknown. Using the mass spectrometry-based approach, we identify neuropilin-1 (NRP1) as a NE receptor that mediates uptake and PR1 cross-presentation in breast cancer cells. We demonstrated that soluble NE is a specific, high-affinity ligand for NRP1 with a calculated Kd of 38.7 nm Furthermore, we showed that NRP1 binds to the RRXR motif in NE. Notably, NRP1 knockdown with interfering RNA or CRISPR-cas9 system and blocking using anti-NRP1 antibody decreased NE uptake and, subsequently, susceptibility to lysis by PR1-specific cytotoxic T cells. Expression of NRP1 in NRP1-deficient cells was sufficient to induce NE uptake. Altogether, because NRP1 is broadly expressed in tumors, our findings suggest a role for this receptor in immunotherapy strategies that target cross-presented antigens.


Subject(s)
Absorption, Physiological , Breast Neoplasms/metabolism , Cross-Priming , Leukocyte Elastase/metabolism , Neoplasm Proteins/metabolism , Neuropilin-1/metabolism , Amino Acid Motifs , Antibodies, Blocking/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , CRISPR-Cas Systems , Cell Line, Tumor , Female , Humans , Kinetics , Leukocyte Elastase/chemistry , Leukocyte Elastase/immunology , Ligands , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neuropilin-1/antagonists & inhibitors , Neuropilin-1/chemistry , Neuropilin-1/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , RNA Interference , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solubility , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
6.
PLoS One ; 11(7): e0160004, 2016.
Article in English | MEDLINE | ID: mdl-27467256

ABSTRACT

Skin toxicity is the most common toxicity caused by Epidermal Growth Factor Receptor (EGFR) inhibitors, and has been associated with clinical efficacy. As EGFR inhibitors enhance the expression of antigen presenting molecules in affected skin keratinocytes, they may concurrently facilitate neo-antigen presentation in lung cancer tumor cells contributing to anti-tumor immunity. Here, we investigated the modulatory effect of the EGFR inhibitor, erlotinib on antigen presenting molecules and PD-L1, prominent immune checkpoint protein, of skin keratinocytes and lung cancer cell lines to delineate the link between EGFR signaling pathway inhibition and potential anti-tumor immunity. Erlotinib up-regulated MHC-I and MHC-II proteins on IFNγ treated keratinocytes but abrogated IFNγ-induced expression of PD-L1, suggesting the potential role of infiltrating autoreactive T cells in the damage of keratinocytes in affected skin. Interestingly, the surface expression of MHC-I, MHC-II, and PD-L1 was up-regulated in response to IFNγ more often in lung cancer cell lines sensitive to erlotinib, but only expression of PD-L1 was inhibited by erlotinib. Further, erlotinib significantly increased T cell mediated cytotoxicity on lung cancer cells. Lastly, the analysis of gene expression dataset of 186 lung cancer cell lines from Cancer Cell Line Encyclopedia demonstrated that overexpression of PD-L1 was associated with sensitivity to erlotinib and higher expression of genes related to antigen presenting pathways and IFNγ signaling pathway. Our findings suggest that the EGFR inhibitors can facilitate anti-tumor adaptive immune responses by breaking tolerance especially in EGFR driven lung cancer that are associated with overexpression of PD-L1 and genes related to antigen presentation and inflammation.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Antineoplastic Agents , B7-H1 Antigen/immunology , Cell Line, Transformed , Cell Line, Tumor , Erlotinib Hydrochloride/therapeutic use , Humans , Lung Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...