Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Brain Behav ; 20(7): e12753, 2021 09.
Article in English | MEDLINE | ID: mdl-34036739

ABSTRACT

Species with multimodal communication integrate information from social cues in different modalities into behavioral responses that are mediated by changes in gene expression in the brain. Differences in patterns of gene expression between signal modalities may shed light on the neuromolecular mechanisms underlying multisensory processing. Here, we use RNA-Seq to analyze brain transcriptome responses to either chemical or visual social signals in a territorial lizard with multimodal communication. Using an intruder challenge paradigm, we exposed 18 wild-caught, adult, male Sceloporus jarrovii to either male conspecific scents (femoral gland secretions placed on a small pebble), the species-specific push-up display (a programmed robotic model), or a control (an unscented pebble). We conducted differential expression analysis with both a de novo S. jarrovii transcriptome assembly and the reference genome of a closely related species, Sceloporus undulatus. Despite some inter-individual variation, we found significant differences in gene expression in the brain across signal modalities and the control in both analyses. The most notable differences occurred between chemical and visual stimulus treatments, closely followed by visual stimulus versus the control. Altered expression profiles could explain documented aggression differences in the immediate behavioral response to conspecific signals from different sensory modalities. Shared differentially expressed genes between visually- or chemically-stimulated males are involved in neural activity and neurodevelopment and several other differentially expressed genes in stimulus-challenged males are involved in conserved signal-transduction pathways associated with the social stress response, aggression and the response to territory intruders across vertebrates.


Subject(s)
Behavior, Animal/physiology , Brain/metabolism , Gene Expression/physiology , Transcriptome/physiology , Achillea/metabolism , Animals , Lizards/metabolism , Male , Photic Stimulation/methods
2.
Sci Rep ; 10(1): 4303, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152427

ABSTRACT

Single substances within complex vertebrate chemical signals could be physiologically or behaviourally active. However, the vast diversity in chemical structure, physical properties and molecular size of semiochemicals makes identifying pheromonally active compounds no easy task. Here, we identified two volatile cyclic dipeptides, cyclo(L-Leu-L-Pro) and cyclo(L-Pro-L-Pro), from the complex mixture of a chemical signal in terrestrial vertebrates (lizard genus Sceloporus), synthesised one of them and investigated their biological activity in male intra-specific communication. In a series of behavioural trials, lizards performed more chemosensory behaviour (tongue flicks, lip smacks and substrate lickings) when presented with the synthesised cyclo(L-Pro-L-Pro) chemical blend, compared to the controls, the cyclo(L-Leu-L-Pro) blend, or a combined blend with both cyclic dipeptides. The results suggest a potential semiochemical role of cyclo(L-Pro-L-Pro) and a modulating effect of cyclo(L-Leu-L-Pro) that may depend on the relative concentration of both compounds in the chemical signal. In addition, our results stress how minor compounds in complex mixtures can produce a meaningful behavioural response, how small differences in structural design are crucial for biological activity, and highlight the need for more studies to determine the complete functional landscape of biologically relevant compounds.


Subject(s)
Behavior, Animal/drug effects , Chemotaxis , Dipeptides/pharmacology , Exocrine Glands/metabolism , Peptides, Cyclic/pharmacology , Volatile Organic Compounds/pharmacology , Animals , Dipeptides/chemistry , Exocrine Glands/drug effects , Lizards , Peptides, Cyclic/chemistry , Volatile Organic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...