Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Emerg Microbes Infect ; 12(2): 2270071, 2023 Dec.
Article En | MEDLINE | ID: mdl-37869789

The emergence of SARS-CoV-2 recombinants is of particular concern as they can result in a sudden increase in immune evasion due to antigenic shift. Recent recombinants XBB and XBB.1.5 have higher transmissibility than previous recombinants such as "Deltacron." We hypothesized that immunity to a SARS-CoV-2 recombinant depends on prior exposure to its parental strains. To test this hypothesis, we examined whether Delta or Omicron (BA.1 or BA.2) immunity conferred through infection, vaccination, or breakthrough infection could neutralize Deltacron and XBB/XBB.1.5 recombinants. We found that Delta, BA.1, or BA.2 breakthrough infections provided better immune protection against Deltacron and its parental strains than did the vaccine booster. None of the sera were effective at neutralizing the XBB lineage or its parent BA.2.75.2, except for the sera from the BA.2 breakthrough group. These results support our hypothesis. In turn, our findings underscore the importance of multivalent vaccines that correspond to the antigenic profile of circulating variants of concern and of variant-specific diagnostics that may guide public health and individual decisions in response to emerging SARS-CoV-2 recombinants.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Vaccination , Antigenic Drift and Shift , Breakthrough Infections , Antibodies, Neutralizing , Antibodies, Viral
2.
Clin Exp Med ; 23(6): 2925-2930, 2023 Oct.
Article En | MEDLINE | ID: mdl-37061998

PURPOSE: Long COVID is estimated to occur in 5-10% of individuals after acute SARS-CoV-2 infection. However, the pathophysiology driving the disease process is poorly understood. METHODS: We evaluated urine and plasma inflammatory and immune cytokine profiles in 33 individuals with long COVID compared to 33 who were asymptomatic and recovered, and 34 without prior infection. RESULTS: Mean urinary leukotriene E4 was significantly elevated among individuals with long COVID compared to asymptomatic and recovered individuals (mean difference 774.2 pg/mL; SD 335.7) and individuals without prior SARS-CoV-2 infection (mean difference 503.1 pg/ml; SD 467.7). Plasma chemokine ligand 6 levels were elevated among individuals with long COVID compared to individuals with no prior SARS-CoV-2 infection (mean difference 0.59 units; SD 0.42). We found no significant difference in angiotensin-converting enzyme 2 antibody levels. Plasma tumor necrosis factor receptor-associated factor 2 (TRAF2) levels were reduced among individuals with long COVID compared to individuals who were asymptomatic and recovered (mean difference = 0.6 units, SD 0.46). Similarly, the mean level of Sarcoma Homology 2-B adapter protein 3 was 3.3 units (SD 1.24) among individuals with long COVID, lower than 4.2 units (SD 1.1) among individuals with recovered, asymptomatic COVID. CONCLUSION: Our findings suggest that further studies should be conducted to evaluate the role of leukotriene E4 as a potential biomarker for a diagnostic test. Furthermore, based on reductions in TRAF2, long COVID may be driven in part by impaired TRAF2-dependent immune-mediated inflammation and potentially immune exhaustion.


COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Leukotriene E4 , TNF Receptor-Associated Factor 2 , SARS-CoV-2 , Ubiquitin-Protein Ligases , Cytokines
3.
Materials (Basel) ; 16(2)2023 Jan 05.
Article En | MEDLINE | ID: mdl-36676256

This work analyses damage formation within the bulk of basalt fiber-reinforced polymers (BFRP) by means of open-source Digital Volume Correlation (DVC). Volumetric image data were obtained from conventional in-situ X-Ray computed micro-tomography (µCT) of samples loaded in tension. The open-source image registration toolkit Elastix was employed to obtain full 3D displacement fields from the image data. We assessed the accuracy of the DVC results using the method of manufactured solution and showed that the approach followed here can detect deformation with a magnitude in the order of a fiber diameter which in the present case is 17 µm. The beneficial influence of regularization on DVC results is presented on the manufactured solution as well as on real in-situ tensile testing CT data of a BFRP sample. Results of the correlation showed that conventional µCT equipment in combination with DVC can be used to detect defects which could previously only be visualized using synchrotron facilities or destructive methods.

4.
Sci Rep ; 12(1): 17046, 2022 10 11.
Article En | MEDLINE | ID: mdl-36221029

Coronavirus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to persist due to mutations resulting in newer, more infectious variants of concern. We aimed to leverage an ongoing private SARS-CoV-2 testing laboratory's infrastructure to monitor SARS-CoV-2 variants in two large California counties. Study enrollment was offered to adults aged 18 years or older in Los Angeles County and Riverside County who recently tested positive for SARS-CoV-2 with a polymerase chain reaction (PCR) assay. A cycle threshold value less than or equal to 30 cycles was considered a positive test for sequencing purposes. Within 5 days of study enrollment, clinician-monitored, self-collected oral fluid and anterior nares swab specimens were obtained from participants. Specimens were transported and stored at 8 °C or cooler. Samples underwent ribonucleic acid extraction, library preparation, and sequencing. SARS-CoV-2 lineages were identified using sequencing data. Participant and genomic data were analyzed using statistical tools and visualized with toolkits. The study was approved by Advarra Institutional Review Board (Pro00053729). From May 27, 2021 to September 9, 2021, 503 individuals were enrolled and underwent specimen collection. Of the 503 participants, 238 (47.3%) participants were women, 329 (63.6%) participants were vaccinated, and 221 (43.9%) participants were of Hispanic or Spanish origin. Of the cohort, 496 (98.6%) participants had symptoms at the time of collection. Among the 503 samples, 443 (88.1%) nasal specimens and 353 (70.2%) oral specimens yielded positive sequencing results. Over our study period, the prevalence of the Alpha variant of SARS-CoV-2 decreased (initially 23.1% [95% confidence interval (95% CI): 0-0.49%] to 0% [95% CI 0.0-0.0%]) as the prevalence of the Delta variant of SARS-CoV-2 increased (initially 33.3% [95% CI 0.0-100.0%] to 100.0% [95% CI 100.0-100.0%]). A strain that carried mutations of both Delta and Mu was identified. We found that outpatient SARS-CoV-2 variant surveillance could be conducted in a timely and accurate manner. The prevalence of different variants changed over time. A higher proportion of nasal specimens yielded results versus oral specimens. Timely and regional outpatient SARS-CoV-2 variant surveillance could be used for public health efforts to identify changes in SARS-CoV-2 strain epidemiology.


COVID-19 , SARS-CoV-2 , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Female , Humans , Male , RNA , SARS-CoV-2/genetics
5.
Proc Natl Acad Sci U S A ; 119(31): e2200592119, 2022 08 02.
Article En | MEDLINE | ID: mdl-35858386

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1, B.1.1, and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (VLPs), we examined mutations in all four structural proteins and found that Omicron and Delta showed 4.6-fold higher luciferase delivery overall relative to the ancestral B.1 lineage, a property conferred mostly by enhancements in the S and N proteins, while mutations in M and E were mostly detrimental to assembly. Thirty-eight antisera samples from individuals vaccinated with Pfizer/BioNTech, Moderna, or Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had 15-fold lower efficacy to prevent cell transduction by VLPs containing the Omicron mutations relative to the ancestral B.1 spike protein. A third dose of Pfizer vaccine elicited substantially higher neutralization titers against Omicron, resulting in detectable neutralizing antibodies in eight out of eight subjects compared to one out of eight preboosting. Furthermore, the monoclonal antibody therapeutics casirivimab and imdevimab had robust neutralization activity against B.1 and Delta VLPs but no detectable neutralization of Omicron VLPs, while newly authorized bebtelovimab maintained robust neutralization across variants. Our results suggest that Omicron has similar assembly efficiency and cell entry compared to Delta and that its rapid spread is due mostly to reduced neutralization in sera from previously vaccinated subjects. In addition, most currently available monoclonal antibodies will not be useful in treating Omicron-infected patients with the exception of bebtelovimab.


Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , COVID-19/virology , Humans , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
6.
Nature ; 607(7918): 351-355, 2022 07.
Article En | MEDLINE | ID: mdl-35584773

SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals1,2. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic. Here we show that without vaccination, infection with Omicron induces a limited humoral immune response in mice and humans. Sera from mice overexpressing the human ACE2 receptor and infected with Omicron neutralize only Omicron, but not other variants of concern, whereas broader cross-variant neutralization was observed after WA1 and Delta infections. Unlike WA1 and Delta, Omicron replicates to low levels in the lungs and brains of infected animals, leading to mild disease with reduced expression of pro-inflammatory cytokines and diminished activation of lung-resident T cells. Sera from individuals who were unvaccinated and infected with Omicron show the same limited neutralization of only Omicron itself. By contrast, Omicron breakthrough infections induce overall higher neutralization titres against all variants of concern. Our results demonstrate that Omicron infection enhances pre-existing immunity elicited by vaccines but, on its own, may not confer broad protection against non-Omicron variants in unvaccinated individuals.


COVID-19 , Cross Protection , SARS-CoV-2 , Vaccination , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cross Protection/immunology , Cytokines , Humans , Mice , SARS-CoV-2/classification , SARS-CoV-2/immunology , Vaccination/statistics & numerical data
7.
medRxiv ; 2022 Jan 02.
Article En | MEDLINE | ID: mdl-34981067

The Omicron SARS-CoV-2 virus contains extensive sequence changes relative to the earlier arising B.1, B.1.1 and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (SC2-VLPs), we examined mutations in all four structural proteins and found that Omicron showed increased infectivity relative to B.1, B.1.1 and similar to Delta, a property conferred by S and N protein mutations. Thirty-eight antisera samples from individuals vaccinated with tozinameran (Pfizer/BioNTech), elasomeran (Moderna), Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had moderately to dramatically reduced efficacy to prevent cell transduction by VLPs containing the Omicron mutations. The Pfizer/BioNTech and Moderna vaccine antisera showed strong neutralizing activity against VLPs possessing the ancestral spike protein (B.1, B.1.1), with 3-fold reduced efficacy against Delta and 15-fold lower neutralization against Omicron VLPs. Johnson & Johnson antisera showed minimal neutralization of any of the VLPs tested. Furthermore, the monoclonal antibody therapeutics Casirivimab and Imdevimab had robust neutralization activity against B.1, B.1.1 or Delta VLPs but no detectable neutralization of Omicron VLPs. Our results suggest that Omicron is at least as efficient at assembly and cell entry as Delta, and the antibody response triggered by existing vaccines or previous infection, at least prior to boost, will have limited ability to neutralize Omicron. In addition, some currently available monoclonal antibodies will not be useful in treating Omicron-infected patients.

8.
medRxiv ; 2022 Feb 09.
Article En | MEDLINE | ID: mdl-35075459

SARS-CoV-2 Delta and Omicron strains are the most globally relevant variants of concern (VOCs). While individuals infected with Delta are at risk to develop severe lung disease 1 , Omicron infection causes less severe disease, mostly upper respiratory symptoms 2,3 . The question arises whether rampant spread of Omicron could lead to mass immunization, accelerating the end of the pandemic. Here we show that infection with Delta, but not Omicron, induces broad immunity in mice. While sera from Omicron-infected mice only neutralize Omicron, sera from Delta-infected mice are broadly effective against Delta and other VOCs, including Omicron. This is not observed with the WA1 ancestral strain, although both WA1 and Delta elicited a highly pro-inflammatory cytokine response and replicated to similar titers in the respiratory tracts and lungs of infected mice as well as in human airway organoids. Pulmonary viral replication, pro-inflammatory cytokine expression, and overall disease progression are markedly reduced with Omicron infection. Analysis of human sera from Omicron and Delta breakthrough cases reveals effective cross-variant neutralization induced by both viruses in vaccinated individuals. Together, our results indicate that Omicron infection enhances preexisting immunity elicited by vaccines, but on its own may not induce broad, cross-neutralizing humoral immunity in unvaccinated individuals.

...