Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1194972, 2023.
Article in English | MEDLINE | ID: mdl-37876962

ABSTRACT

The high expression of uPAR has been linked to tumor progression, invasion, and metastasis in several types of cancer. Such overexpression of uPAR makes it a potential target for immunotherapies across common cancers such as breast, colorectal, lung, ovarian cancer, and melanoma. In our study, two high-affinity and specific human VH domain antibody candidates, designed as clones 3 and 115, were isolated from a phage-displayed human VH antibody library. Domain-based bispecific T- cell engagers (DbTE) based on these two antibodies exhibited potent killing of uPAR-positive cancer cells. Thus, these two anti-uPAR domain antibodies are promising candidates for treating uPAR positive cancers.

2.
Mol Pharm ; 20(5): 2754-2760, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37067377

ABSTRACT

The elevated expression of GPNMB and VCAM-1 has been observed in many cancers including breast cancer, melanoma, and prostate cancers. Such overexpression of GPNMB and VCAM-1 has been associated with poor prognosis and increased cancer metastasis. Thus, GPNMB and VCAM-1 are potential targets for immunotherapies across multiple cancers. In this study, two high-affinity specific human VH domain antibody candidates, 87 (GPNMB) and 1B2 (VCAM-1), were isolated from our in-house proprietary phage-displayed human VH antibody domain libraries. The avidity was increased after conversion to VH-Fc. Domain-based bispecific T-cell engagers (DbTE) based on these two antibodies combined with the anti-CD3ε OKT3 antibody exhibited potent killing against GPNMB and VCAM-1-positive cancer cells, respectively. Hence, these two domain antibodies are promising therapeutic candidates for cancers expressing GPNMB or VCAM-1.


Subject(s)
Breast Neoplasms , Melanoma , Humans , Female , Vascular Cell Adhesion Molecule-1 , Antibodies , Breast Neoplasms/drug therapy , Immunoglobulin Variable Region , Transcription Factors , Membrane Glycoproteins
3.
Front Immunol ; 14: 1070492, 2023.
Article in English | MEDLINE | ID: mdl-36761762

ABSTRACT

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein expressed in many tissues. High expression levels of ENPP1 have been observed in many cancer types such as lung cancer, ovarian cancer, and breast cancer. Such overexpression has been associated with poor prognosis in these diseases. Hence, ENPP1 is a potential target for immunotherapy across multiple cancers. Here, we isolated and characterized two high-affinity and specific anti-ENPP1 Fab antibody candidates, 17 and 3G12, from large phage-displayed human Fab libraries. After conversion to IgG1, the binding of both antibodies increased significantly due to avidity effects. Based on these antibodies, we generated antibody-drug conjugates (ADCs), IgG-based bispecific T-cell engagers (IbTEs), and CAR T-cells which all exhibited potent killing of ENPP1-expressing cells. Thus, these various antibody-derived modalities are promising therapeutic candidates for cancers expressing human ENPP1.


Subject(s)
Breast Neoplasms , Immunoconjugates , Humans , Female , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Immunoglobulin G , Pyrophosphatases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL