Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceut Med ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259426

ABSTRACT

The advent of artificial intelligence (AI) revolutionizes the ways of working in many areas of business and life science. In Medical Affairs (MA) departments of the pharmaceutical industry AI holds great potential for positively influencing the medical mission of identifying and addressing unmet medical needs and care gaps, and fostering solutions that improve the egalitarian and unbiased access of patients to treatments worldwide. Given the essential position of MA in corporate interactions with various healthcare stakeholders, AI offers broad possibilities to support strategic decision-making and to pioneer novel approaches in medical stakeholder interactions. By analyzing data derived from the healthcare environment and by streamlining operations in medical content generation, AI advances data-based prioritization and strategy execution. In this review, we discuss promising AI-based solutions in MA that support the effective use of heterogenous information from observations of the healthcare environment, the enhancement of medical education, and the analysis of real-world data. For a successful implementation of such solutions, specific considerations partly unique to healthcare must be taken care of, for example, transparency, data privacy, healthcare regulations, and in predictive applications, explainability.

2.
Nat Commun ; 14(1): 6578, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37852949

ABSTRACT

Large genes including several CRISPR-Cas modules like gene activators (CRISPRa) require dual adeno-associated viral (AAV) vectors for an efficient in vivo delivery and expression. Current dual AAV vector approaches have important limitations, e.g., low reconstitution efficiency, production of alien proteins, or low flexibility in split site selection. Here, we present a dual AAV vector technology based on reconstitution via mRNA trans-splicing (REVeRT). REVeRT is flexible in split site selection and can efficiently reconstitute different split genes in numerous in vitro models, in human organoids, and in vivo. Furthermore, REVeRT can functionally reconstitute a CRISPRa module targeting genes in various mouse tissues and organs in single or multiplexed approaches upon different routes of administration. Finally, REVeRT enabled the reconstitution of full-length ABCA4 after intravitreal injection in a mouse model of Stargardt disease. Due to its flexibility and efficiency REVeRT harbors great potential for basic research and clinical applications.


Subject(s)
Gene Editing , Trans-Splicing , Humans , Animals , Mice , Trans-Splicing/genetics , Genetic Therapy , Stargardt Disease , Genetic Vectors/genetics , Dependovirus/genetics , Dependovirus/metabolism , ATP-Binding Cassette Transporters/metabolism
3.
Sci Adv ; 6(34): eaba5614, 2020 08.
Article in English | MEDLINE | ID: mdl-32875106

ABSTRACT

Catalytically inactive dCas9 fused to transcriptional activators (dCas9-VPR) enables activation of silent genes. Many disease genes have counterparts, which serve similar functions but are expressed in distinct cell types. One attractive option to compensate for the missing function of a defective gene could be to transcriptionally activate its functionally equivalent counterpart via dCas9-VPR. Key challenges of this approach include the delivery of dCas9-VPR, activation efficiency, long-term expression of the target gene, and adverse effects in vivo. Using dual adeno-associated viral vectors expressing split dCas9-VPR, we show efficient transcriptional activation and long-term expression of cone photoreceptor-specific M-opsin (Opn1mw) in a rhodopsin-deficient mouse model for retinitis pigmentosa. One year after treatment, this approach yields improved retinal function and attenuated retinal degeneration with no apparent adverse effects. Our study demonstrates that dCas9-VPR-mediated transcriptional activation of functionally equivalent genes has great potential for the treatment of genetic disorders.


Subject(s)
CRISPR-Cas Systems , Genetic Therapy , Animals , Blindness/genetics , Blindness/therapy , Mice , Transcription Factors/genetics , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL