Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Biol ; 227(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39140251

ABSTRACT

Ultraviolet radiation (UVR) is a pervasive factor that has shaped the evolution of life on Earth. Ambient levels of UVR mediate key biological functions but can also cause severe lethal and sublethal effects in a wide range of organisms. Furthermore, UVR is a powerful modulator of the effects of other environmental factors on organismal physiology, such as temperature, disease, toxicology and pH, among others. This is critically important in the context of global change, where understanding the effects of multiple stressors is a key challenge for experimental biologists. Ecological physiologists rarely afford UVR discussion or include UVR in experimental design, even when it is directly relevant to their study system. In this Commentary, we provide a guide for experimental biologists to better understand if, when, and how UVR can be integrated into experimental designs to improve the ecological realism of their experiments.


Subject(s)
Ultraviolet Rays , Animals , Stress, Physiological , Research Design
2.
J Exp Biol ; 227(5)2024 03 01.
Article in English | MEDLINE | ID: mdl-38323449

ABSTRACT

Statistical analyses that physiologists use to test hypotheses predominantly centre on means, but the tail ends of the response distribution can behave quite differently and underpin important scientific phenomena. We demonstrate that quantile regression (QR) offers a way to bypass some limitations of least squares regression (LSR) by building a picture of independent variable effects across the whole distribution of a dependent variable. We used LSR and QR with simulated and real datasets. With simulated data, LSR showed no change in the mean response but missed significant effects in the tails of the distribution found using QR. With real data, LSR showed a significant change in the mean response but missed a lack of response in the upper quantiles which was biologically revealing. Together, this highlights that QR can help to ask and answer more questions about variation in nature.


Subject(s)
Research Design , Regression Analysis
3.
J Exp Zool A Ecol Integr Physiol ; 341(3): 272-281, 2024 04.
Article in English | MEDLINE | ID: mdl-38197718

ABSTRACT

Amphibian declines are sometimes correlated with increasing levels of ultraviolet radiation (UVR). While disease is often implicated in declines, environmental factors such as temperature and UVR play an important role in disease epidemiology. The mutagenic effects of UVR exposure on amphibians are worse at low temperatures. Amphibians from cold environments may be more susceptible to increasing UVR. However, larvae of some species demonstrate cold acclimation, reducing UV-induced DNA damage at low temperatures. Understanding of the mechanisms underpinning this response is lacking. We reared Limnodynastes peronii larvae in cool (15°C) or warm (25°C) waters before acutely exposing them to 1.5 h of high intensity (80 µW cm-2 ) UVBR. We measured the color of larvae and mRNA levels of a DNA repair enzyme. We reared larvae at 25°C in black or white containers to elicit a skin color response, and then measured DNA damage levels in the skin and remaining carcass following UVBR exposure. Cold-acclimated larvae were darker and displayed lower levels of DNA damage than warm-acclimated larvae. There was no difference in CPD-photolyase mRNA levels between cold- and warm-acclimated larvae. Skin darkening in larvae did not reduce their accumulation of DNA damage following UVR exposure. Our results showed that skin darkening does not explain cold-induced reductions in UV-associated DNA damage in L. peronii larvae. Beneficial cold-acclimation is more likely underpinned by increased CPD-photolyase abundance and/or increased photolyase activity at low temperatures.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Ultraviolet Rays , Animals , Larva/physiology , Ultraviolet Rays/adverse effects , DNA Damage , Anura/physiology , RNA, Messenger
4.
J Therm Biol ; 117: 103711, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37717403

ABSTRACT

Increases in ultraviolet radiation (UVR) correlate spatially and temporally with global amphibian population declines and interact with other stressors such as disease and temperature. Declines have largely occurred in high-altitude areas associated with greater UVR and cooler temperatures. UVR is a powerful mutagenic harming organisms largely by damaging DNA. When acutely exposed to UVR at cool temperatures, amphibian larvae have increased levels of DNA damage. Amphibians may compensate for the depressive effects of temperature on DNA damage through acclimatisation, but it is unknown whether they have this capacity. We reared striped marsh frog larvae (Limnodynastes peronii) in warm (25 °C) and cool (15 °C) temperatures under a low or moderate daily dose of UVR (10 and 40 µW cm-2 UV-B for 1 h at midday, respectively) for 18-20 days and then measured DNA damage resulting from an acute high UVR dose (80 µW cm-2 UV-B for 1.5 h) at a range of temperatures (10, 15, 20, 25, and 30 °C). Larvae acclimated to 15 °C and exposed to UVR at 15 °C completely compensated UVR-induced DNA damage compared with 25 °C acclimated larvae exposed to UVR at 25 °C. Additionally, warm-acclimated larvae had higher DNA damage than cold-acclimated larvae across test temperatures, which indicated a cost of living in warmer temperatures. Larvae reared under elevated UVR levels showed no evidence of UVR acclimation resulting in lower DNA damage following high UVR exposure. Our finding that thermal acclimation in L. peronii larvae compensated UVR-induced DNA damage at low temperatures suggested that aquatic ectotherms living in cool temperatures may be more resilient to high UVR than previously realised. We suggested individuals or species with less capacity for thermal acclimation of DNA repair mechanisms may be more at risk if exposed to changing thermal and UVR exposure regimes.

5.
Glob Chang Biol ; 29(14): 3857-3868, 2023 07.
Article in English | MEDLINE | ID: mdl-37310166

ABSTRACT

Ecological carryover effects, or delayed effects of the environment on an organism's phenotype, are central predictors of individual fitness and a key issue in conservation biology. Climate change imposes increasingly variable environmental conditions that may be challenging to early life-history stages in animals with complex life histories, leading to detrimental physiological and fitness effects in later life. Yet, the latent nature of carryover effects, combined with the long temporal scales over which they can manifest, means that this phenomenon remains understudied and is often overlooked in short-term studies limited to single life-history stages. Herein, we review evidence for the physiological carryover effects induced by elevated ultraviolet radiation (UVR; 280-400 nm) as a potential contributor to recent amphibian population declines. UVR exposure causes a suite of molecular, cellular and physiological consequences known to underpin carryover effects in other taxa, but there is a lack of research linking embryonic and larval UVR exposures to fitness consequences post-metamorphosis in amphibians. We propose that the key impacts of UVR on disease-related amphibian declines are facilitated through carryover effects that bridge embryonic and larval UVR exposure with potential increased disease susceptibility post-metamorphosis. We conclude by identifying a practical direction for the study of ecological carryover effects in amphibians that could guide future ecological research in the broader field of conservation physiology. Only by addressing carryover effects can many of the mechanistic links between environmental change and population declines be elucidated.


Subject(s)
Amphibians , Ultraviolet Rays , Animals , Ultraviolet Rays/adverse effects , Climate Change , Larva , Phenotype
6.
J Exp Biol ; 226(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37366314

ABSTRACT

Greater engagement and representation of Indigenous voices, knowledges and worldviews in the biological sciences is growing globally through efforts to bring more Indigenous academics into scientific research and teaching institutions. Although the intentions of such efforts may be admirable, these spaces often become sites of great personal tension for the Indigenous scholars who must 'bridge' or 'facilitate' a dialogue between Indigenous and settler-colonial (predominantly Western) knowledge traditions and worldviews. We are a small collective of early career Indigenous scholars from Australia, the United States and Aotearoa New Zealand, and we have gained insights into this situation through the unique experiential learning afforded by navigating such tensions. Here, we discuss tensions that bear remarkable similarities across geographies, cultures and settler-colonial contexts. In doing so, we aim to support other Indigenous scientists and scholars navigating settler-colonial and Western research institutions, while offering guidance, suggestions and reflections for the scientific community to allow the development of more nuanced strategies to support Indigenous academics than simply increasing Indigenous representation. We imagine transformed, innovative research and teaching agendas where Indigenous knowledges can thrive, and Indigenous scientists can apply themselves with mutual and balanced respect and reciprocity.


Subject(s)
Colonialism , New Zealand , Australia
7.
Biol Lett ; 18(10): 20220358, 2022 10.
Article in English | MEDLINE | ID: mdl-36475948

ABSTRACT

Anthropogenic ozone depletion has led to a 2-5% increase in ultraviolet B radiation (UVBR) levels reaching the earth's surface. Exposure to UVBR causes harmful DNA damage in amphibians, but this is minimized by DNA repair enzymes such as thermally sensitive cyclobutane pyrimidine dimer (CPD)-photolyase, with cool temperatures slowing repair rates. It is unknown whether amphibian species differ in the repair response to a given dose of UVBR across temperatures. We reared larvae of three species (Limnodynastes peronii, Limnodynastes tasmaniensis and Platyplectrum ornatum) at 25°C and acutely exposed them to 80 µW cm-2 UVBR for 2 h at either 20°C or 30°C. UVBR-mediated DNA damage was measured as larvae repaired damage in photoreactive light at their exposure temperatures. Cool temperatures increased DNA damage in two species and slowed DNA repair rate in P. ornatum. The magnitude of DNA damage incurred from UVBR was species-specific. Platyplectrum ornatum had the lowest CPDs and DNA repair rates, and the depressive effects of low temperature on photorepair were greater in L. tasmaniensis. Considering the susceptibility of most aquatic organisms to UVBR, this research highlighted a need to consider the complexity of species-specific physiology when forecasting the influence of changing UVBR and temperature in aquatic ecosystems.


Subject(s)
DNA Damage , Ecosystem , Animals , Larva
8.
J Exp Biol ; 225(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35702935

ABSTRACT

Many aquatically respiring animals acutely exposed to low pH waters suffer inhibition of ion uptake and loss of branchial (gill) epithelial integrity, culminating in a fatal loss of body Na+. Environmental calcium levels ([Ca2+]e) are pivotal in maintaining branchial junction integrity, with supplemental Ca2+ reversing the negative effects of low pH in some animals. Tolerance of some naturally acidic environments by aquatic animals is further complicated by low [Ca2+]e, yet many of these environments are surprisingly biodiverse. How animals overcome the damaging actions of low pH and low environmental Ca2+ remains unknown. We examined the effects of [Ca2+]e on the response to low pH in larvae of the highly acid-tolerant frog Limnodynastes terraereginae. Acute exposure to low pH water in the presence of low (5 µmol l-1) [Ca2+]e increased net Na+ efflux. Provision of additional [Ca2+]e reduced net Na+ efflux, but the effect was saturable. Acclimation to both low and high (250 µmol l-1) [Ca2+]e improved the resistance of larvae to Na+ efflux at low pH. Exposure to the Ca2+ channel inhibitor ruthenium red resulted in an abrupt loss of tolerance in low pH-acclimated larvae. Acclimation to acidic water increased branchial gene expression of the intracellular Ca2+ transport protein calbindin, consistent with a role for increased transcellular Ca2+ trafficking in the tolerance of acidic water. This study supports a role for [Ca2+]e in promoting branchial integrity and highlights a potential mechanism via the maintenance of transcellular Ca2+ uptake in the acid tolerance of L. terraereginae larvae.


Subject(s)
Calcium , Fresh Water , Acids/metabolism , Animals , Anura/metabolism , Calcium/metabolism , Calcium, Dietary , Hydrogen-Ion Concentration , Larva/metabolism , Sodium/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL