Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biosensors (Basel) ; 14(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38248388

ABSTRACT

A photoelectrochemical biosensor for malate was developed using an indium tin oxide (ITO) layer deposited on a poly(ethylene terephthalate) plastic sheet as a transparent electrode material for the immobilization of malate dehydrogenase together with CdTe quantum dots. Different approaches were compared for the construction of the bioactive layer; the highest response was achieved by depositing malate dehydrogenase together with CdTe nanoparticles and covering it with a Nafion/water (1:1) mixture. The amperometric signal of this biosensor was recorded during irradiation with a near-UV LED in the flow-through mode. The limit of detection was 0.28 mmol/L, which is adequate for analyzing malic acid levels in drinks such as white wines and fruit juices. The results confirm that the cheap ITO layer deposited on the plastic sheet after cutting into rectangular electrodes allows for the economic production of photoelectrochemical (bio)sensors. The combination of NAD+-dependent malate dehydrogenase with quantum dots was also compatible with such an ITO surface.


Subject(s)
Cadmium Compounds , Quantum Dots , Tin Compounds , Malate Dehydrogenase , Malates , Tellurium
2.
Biomolecules ; 12(4)2022 04 05.
Article in English | MEDLINE | ID: mdl-35454134

ABSTRACT

Extracellular HMGB1 protein is known to induce inflammatory responses leading to an inflammatory storm. The outbreak of the Severe Acute Respiratory Syndrome COVID-19 due to the SARS-CoV-2 virus has resulted in a huge health concern worldwide. Recent data revealed that plasma/serum HMGB1 levels of patients suffering from inflammation-mediated disorders-such as COVID-19, cancer, and autoimmune disorders-correlate positively with disease severity and vice versa. A late release of HMGB1 in sepsis suggests the existence of a wide therapeutic window for treating sepsis. Rapid and accurate methods for the detection of HMGB1 levels in plasma/serum are, therefore, of great importance for monitoring the occurrence, treatment success, and survival prediction of patients with inflammation-mediated diseases. In this review, we briefly explain the role of HMGB1 in the cell, and particularly the involvement of extracellular HMGB1 (released from the cells) in inflammation-mediated diseases, with an emphasis on COVID-19. The current assays to measure HMGB1 levels in human plasma-Western blotting, ELISA, EMSA, and a new approach based on electrochemical immunosensors, including some of our preliminary results-are presented and thoroughly discussed.


Subject(s)
COVID-19 , HMGB1 Protein , Sepsis , Biosensing Techniques , COVID-19/blood , COVID-19/diagnosis , HMGB1 Protein/blood , Humans , Immunoassay , Prognosis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL