Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Part A ; 26(15-16): 915-926, 2020 08.
Article in English | MEDLINE | ID: mdl-32070231

ABSTRACT

Adipose-derived mesenchymal stromal/stem cells (ASCs) represent a commonly used cell source for adipose tissue engineering. In this context, ASCs have routinely been cultured in conventional 2D culture and applied as single cell suspension for seeding onto scaffold materials or direct injection. However, this approach is associated with the loss of their intrinsic 3D microenvironment and leads to impaired regenerative capacity of the cells. Thus, the application of ASCs as self-assembled 3D spheroids with cells residing in their own matrix is an attractive alternative. However, characterization of the structural features and differentiation capacity of the spheroids is necessary to effectively apply them as building blocks in adipose tissue engineering. In this study, we focus on extracellular matrix (ECM) development in ASC spheroids, as well as adipogenic differentiation in comparison to conventional 2D culture using different induction protocols. Reproducible assembly of ASCs into spheroids was achieved within 24 h using the liquid overlay technique. Undifferentiated spheroids displayed a stromal ECM pattern, with fibronectin, collagen V, and VI as the main components. In the course of adipogenesis, a dynamic shift in the ECM composition toward an adipogenic phenotype was observed, associated with enhanced expression of laminin, collagen I, IV, V, and VI, similar to native fat. Furthermore, adipogenic differentiation was enhanced in spheroids as compared with 2D cultured cells, with the spheroids needing a distinctly shorter adipogenic stimulus to sustain adipogenesis, which was demonstrated based on analysis of triglyceride content and adipogenic marker gene expression. In summary, culturing ASCs as spheroids can enhance their adipogenic capacity and generate adipose-like microtissues, which may be a promising cell delivery strategy for adipose tissue engineering approaches. Impact statement Adipose-derived mesenchymal stromal/stem cells (ASCs) as a widely used cell source for adipose tissue engineering have been shown to be limited in their regenerative capacity when applied as single cells. As an alternative approach, the delivery as spheroids, consisting of cells in a 3D context, may be favorable. However, insights into extracellular matrix (ECM) development and efficient adipogenic differentiation are required for their effective application. In this study, we show that differentiated ASC spheroids develop an ECM, resembling native adipose tissue. Furthermore, the ASC spheroids exhibited a superior differentiation capacity as compared with conventional 2D culture, and required only a short adipogenic induction stimulus. Our results identify ASC-derived spheroids as an attractive cell delivery method for adipose tissue engineering approaches.


Subject(s)
Adipogenesis , Adipose Tissue , Extracellular Matrix , Mesenchymal Stem Cells , Cell Differentiation , Cells, Cultured , Humans , Tissue Engineering
2.
Adv Healthc Mater ; 8(7): e1801326, 2019 04.
Article in English | MEDLINE | ID: mdl-30835969

ABSTRACT

Melt electrowriting (MEW) is an additive manufacturing technology that is recently used to fabricate voluminous scaffolds for biomedical applications. In this study, MEW is adapted for the seeding of multicellular spheroids, which permits the easy handling as a single sheet-like tissue-scaffold construct. Spheroids are made from adipose-derived stromal cells (ASCs). Poly(ε-caprolactone) is processed via MEW into scaffolds with box-structured pores, readily tailorable to spheroid size, using 13-15 µm diameter fibers. Two 7-8 µm diameter "catching fibers" near the bottom of the scaffold are threaded through each pore (360 and 380 µm) to prevent loss of spheroids during seeding. Cell viability remains high during the two week culture period, while the differentiation of ASCs into the adipogenic lineage is induced. Subsequent sectioning and staining of the spheroid-scaffold construct can be readily performed and accumulated lipid droplets are observed, while upregulation of molecular markers associated with successful differentiation is demonstrated. Tailoring MEW scaffolds with pores allows the simultaneous seeding of high numbers of spheroids at a time into a construct that can be handled in culture and may be readily transferred to other sites for use as implants or tissue models.


Subject(s)
Tissue Engineering , Tissue Scaffolds/chemistry , Adipogenesis/drug effects , Adipose Tissue/cytology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Differentiation/drug effects , Cell Survival/drug effects , Humans , Lipid Droplets/metabolism , Polyesters/chemistry , Porosity , Printing, Three-Dimensional , Sepharose/chemistry , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Stromal Cells/cytology , Stromal Cells/metabolism
3.
J Cell Physiol ; 233(4): 3315-3329, 2018 04.
Article in English | MEDLINE | ID: mdl-28888046

ABSTRACT

Adipose-derived stromal/stem cells (ASCs) represent a widely used cell source with multi-lineage differentiation capacity in approaches for tissue engineering and regenerative medicine. Despite the multitude of literature on their differentiation capacity, little is reported about the physiological properties contributing to and controlling the process of lineage differentiation. Direct intercellular communication between adjacent cells via gap junctions has been shown to modulate differentiation processes in other cell types, with connexin 43 (Cx43) being the most abundant isoform of the gap junction-forming connexins. Thus, in the present study we focused on the expression of Cx43 and gap junctional intercellular communication (GJIC) in human ASCs, and its significance for adipogenic differentiation of these cells. Cx43 expression in ASCs was demonstrated histologically and on the gene and protein expression level, and was shown to be greatly positively influenced by cell seeding density. Functionality of gap junctions was proven by dye transfer analysis in growth medium. Adipogenic differentiation of ASCs was shown to be also distinctly elevated at higher cell seeding densities. Inhibition of GJIC by 18α-glycyrrhetinic acid (AGA) significantly compromised adipogenic differentiation, as demonstrated by histology, triglyceride quantification, and adipogenic marker gene expression. Flow cytometry analysis showed a lower proportion of cells undergoing adipogenesis when GJIC was inhibited, further indicating the importance of GJIC in the differentiation process. Altogether, this study demonstrates the impact of direct cell-cell communication via gap junctions on the adipogenic differentiation process of ASCs, and may contribute to further integrate direct intercellular crosstalk in rationales for tissue engineering approaches.


Subject(s)
Adipogenesis , Adipose Tissue/cytology , Cell Communication , Gap Junctions/metabolism , Stem Cells/metabolism , Cell Count , Connexin 43/metabolism , Humans , Stromal Cells/metabolism
4.
Tissue Eng Part A ; 21(7-8): 1343-53, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25602488

ABSTRACT

The development of vascularized and functional adipose tissue substitutes is required to improve soft tissue augmentation. In this study, vascularized adipose tissue constructs were generated using uncultured cells from the stromal-vascular fraction (SVF) of adipose tissue as an alternative cell source to adipose-derived stem cells. SVF cell behavior and tissue formation were compared in a stable fibrin formulation developed by our group and a commercial fibrin sealant (TissuCol; Baxter) upon direct subcutaneous implantation in a nude mouse model. Further, the effect of in vitro adipogenic induction on SVF cell development was investigated by implanting stable fibrin constructs after 1 week of precultivation (adipogenic vs. noninduced control). Constructs were thoroughly analyzed before implantation regarding adipogenic differentiation status, cell viability, and distribution as well as the presence of endothelial cells. Before implantation, in vitro precultivation strongly promoted adipogenesis (under adipogenic conditions) and the formation of CD31(+) prevascular structures by SVF cells (under nonadipogenic conditions). Tissue development in vivo was determined after 4 weeks by histology (hematoxylin and eosin, human vimentin) and quantified histomorphometrically. In stable fibrin gels, adipogenic precultivation was superior to noninduced conditions, resulting in mature adipocytes and the formation of distinct vascular structures of human origin in vivo. Strong neovascularization by the implanted cells predominated in noninduced constructs. Without pretreatment, the SVF in stable fibrin gels displayed only a weak differentiation capability. In contrast, TissuCol gels strongly supported the formation of coherent and well-vascularized adipose tissue of human origin, displaying large unilocular adipocytes. The developed native-like tissue architecture was highlighted by a whole mount staining technique. Taken together, SVF cells from human adipose tissue were shown to successfully lead to adipose tissue formation in fibrin hydrogels in vivo. The results render the SVF a promising cell source for subsequent studies both in vitro and in vivo with the aim of engineering clinically applicable soft tissue substitutes.


Subject(s)
Adipose Tissue/blood supply , Fibrin/pharmacology , Hydrogels/pharmacology , Tissue Engineering/methods , Adipose Tissue/drug effects , Adult , Animals , Biomarkers/metabolism , Cattle , Cell Survival/drug effects , Female , Flow Cytometry , Humans , Mice, Nude , Middle Aged , Prosthesis Implantation , Stromal Cells/cytology , Stromal Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...