Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 611
Filter
1.
Nutrients ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931240

ABSTRACT

Osteoarthritis (OA) is a chronic degenerative joint disease that causes chronic pain, swelling, stiffness, disability, and significantly reduces the quality of life. Typically, OA is treated using painkillers and non-steroidal anti-inflammatory drugs (NSAIDs). While current pharmacologic treatments are common, their potential side effects have prompted exploration into functional dietary supplements. Recently, eggshell membrane (ESM) has emerged as a potential functional ingredient for joint and connective tissue disorders due to its clinical efficacy in relieving joint pain and stiffness. Despite promising clinical evidence, the effects of ESM on OA progression and its mechanism of action remain poorly understood. This study evaluated the efficacy of Ovomet®, a powdered natural ESM, against joint pain and disease progression in a monosodium iodoacetate (MIA)-induced rodent model of OA in mice and rats. The results demonstrate that ESM significantly alleviates joint pain and attenuates articular cartilage destruction in both mice and rats that received oral supplementation for 5 days prior to OA induction and for 28 days thereafter. Interestingly, ESM significantly inhibited mRNA expression levels of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), as well as inflammatory mediators, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase in the knee joint cartilage at the early stage of OA, within 7 days after OA induction. However, this effect was not observed in the late stage at 28 days after OA induction. ESM further attenuates the induction of protein expression for cartilage-degrading enzymes like matrix metalloproteinase (MMPs) 3 and 13, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), in the late-stage. In addition, MIA-induced reduction of the protein expression levels of cartilage components, cartilage oligomeric matrix protein (COMP), aggrecan (ACAN) and collagen type II α-1 chain (COL2α1), and cartilage extracellular matrix (ECM) synthesis promoting transcriptional factor SRY-Box 9 (SOX-9) were increased via ESM treatment in the cartilage tissue. Our findings suggest that Ovomet®, a natural ESM powder, is a promising dietary functional ingredient that can alleviate pain, inflammatory response, and cartilage degradation associated with the progression of OA.


Subject(s)
Cartilage, Articular , Egg Shell , Osteoarthritis , Animals , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Osteoarthritis/drug therapy , Osteoarthritis/chemically induced , Male , Mice , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Rats , Inflammation/drug therapy , Dietary Supplements , Cytokines/metabolism , Disease Models, Animal , Rats, Sprague-Dawley , Arthralgia/drug therapy , Arthralgia/chemically induced , Time Factors , Iodoacetic Acid , Anti-Inflammatory Agents/pharmacology
4.
Br J Pharmacol ; 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745399

ABSTRACT

BACKGROUND AND PURPOSE: Chitinase-3-like 1 (CHI3L1) causes skin inflammation in the progression of atopic dermatitis. We investigated if anti-CHI3L1 antibody could prevent the development of atopic dermatitis and its mechanisms of action. EXPERIMENTAL APPROACH: The effect of CHI3L1 antibody on phthalic anhydride-induced atopic dermatitis animal model and in vitro reconstructed human skin (RHS) model were investigated. Expression and release of atopic dermatitis-related cytokines were determined using an enzyme-linked immunosorbent assay, and RT-qPCR, STAT3 and CXCL8 signalling were measured by western blotting. KEY RESULTS: Anti-CHI3L1 antibody suppressed phthalic anhydride-induced epidermal thickening, clinical score, IgE level and infiltration of inflammatory cells, and reduced phthalic anhydride-induced inflammatory cytokines concentration. In addition, CHI3L1 antibody treatment inhibited the expression of STAT3 activity in phthalic anhydride-treated skin. It was also confirmed that CHI3L1 antibody treatment alleviated atopic dermatitis-related inflammation in the RHS model. The inhibitory effects of CHI3L1 antibody was similar or more effective compared with that of the IL-4 antibody. We further found that CHI3L1 is associated with CXCL8 by protein-association network analysis. siRNA of CHI3L1 blocked the mRNA levels of CHI3L1, IL-1ß, IL-4, CXCL8, TSLP, and the expression of CHI3L1 and p-STAT, and the level of CXCL8, whereas recombinant level of CXCL8 was elevated. Moreover, siRNA of STAT3 reduced the mRNA level of these cytokines. CHI3L1 and p-STAT3 expression correlated with the reduced CXCL8 level in the RHS in vitro model. CONCLUSION AND IMPLICATIONS: Our data demonstrated that CHI3L1 antibody could be a promising effective therapeutic drug for atopic dermatitis.

5.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791588

ABSTRACT

Several clinical studies reported that the elevated expression of Chitinase-3-like 1 (CHI3L1) was observed in patients suffering from a wide range of diseases: cancer, metabolic, and neurological diseases. However, the role of CHI3L1 in AD is still unclear. Our previous study demonstrated that 2-({3-[2-(1-Cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}culfanyl)-N-(4-ethylphenyl)butanamide, a CHI3L1 inhibiting compound, alleviates memory and cognitive impairment and inhibits neuroinflammation in AD mouse models. In this study, we studied the detailed correlation of CHI3L1 and AD using serum from AD patients and using CHI3L1 knockout (KO) mice with Aß infusion (300 pmol/day, 14 days). Serum levels of CHI3L1 were significantly elevated in patients with AD compared to normal subjects, and receiver operating characteristic (ROC) analysis data based on serum analysis suggested that CHI3L1 could be a significant diagnostic reference for AD. To reveal the role of CHI3L1 in AD, we investigated the CHI3L1 deficiency effect on memory impairment in Aß-infused mice and microglial BV-2 cells. In CHI3L1 KO mice, Aß infusion resulted in lower levels of memory dysfunction and neuroinflammation compared to that of WT mice. CHI3L1 deficiency selectively inhibited phosphorylation of ERK and IκB as well as inhibition of neuroinflammation-related factors in vivo and in vitro. On the other hand, treatment with recombinant CHI3L1 increased neuroinflammation-related factors and promoted phosphorylation of IκB except for ERK in vitro. Web-based gene network analysis and our results showed that CHI3L1 is closely correlated with PTX3. Moreover, in AD patients, we found that serum levels of PTX3 were correlated with serum levels of CHI3L1 by Spearman correlation analysis. These results suggest that CHI3L1 deficiency could inhibit AD development by blocking the ERK-dependent PTX3 pathway.


Subject(s)
Amyloid beta-Peptides , Chitinase-3-Like Protein 1 , Cognitive Dysfunction , MAP Kinase Signaling System , Mice, Knockout , Neuroinflammatory Diseases , Animals , Chitinase-3-Like Protein 1/genetics , Chitinase-3-Like Protein 1/metabolism , Mice , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Amyloid beta-Peptides/metabolism , Humans , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Male , MAP Kinase Signaling System/drug effects , C-Reactive Protein/metabolism , Female , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Down-Regulation , Disease Models, Animal , Aged , Mice, Inbred C57BL
6.
Int J Biol Macromol ; 269(Pt 2): 131925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685540

ABSTRACT

The prevalence of Alzheimer's disease (AD) and its associated economic and societal burdens are on the rise, but there are no curative treatments for AD. Interestingly, this neurodegenerative disease shares several biological and pathophysiological features with cancer, including cell-cycle dysregulation, angiogenesis, mitochondrial dysfunction, protein misfolding, and DNA damage. However, the genetic factors contributing to the overlap in biological processes between cancer and AD have not been actively studied. In this review, we discuss the shared biological features of cancer and AD, the molecular targets of anticancer drugs, and therapeutic approaches. First, we outline the common biological features of cancer and AD. Second, we describe several anticancer drugs, their molecular targets, and their effects on AD pathology. Finally, we discuss how protein-protein interactions (PPIs), receptor inhibition, immunotherapy, and gene therapy can be exploited for the cure and management of both cancer and AD. Collectively, this review provides insights for the development of AD theragnostics based on cancer drugs and molecular targets.


Subject(s)
Alzheimer Disease , Antineoplastic Agents , Neoplasms , Humans , Alzheimer Disease/therapy , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Immunotherapy , Animals , Molecular Targeted Therapy , Genetic Therapy
7.
Arch Pharm Res ; 47(4): 341-359, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38592583

ABSTRACT

The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 µg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.


Subject(s)
Brain-Derived Neurotrophic Factor , Lung Neoplasms , Mice, Knockout , Receptor, trkB , Receptors, Tumor Necrosis Factor, Type II , Schizophrenia , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Humans , Mice , Schizophrenia/metabolism , Schizophrenia/genetics , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/deficiency , Receptor, trkB/metabolism , Receptor, trkB/genetics , A549 Cells , Male , Behavior, Animal/drug effects , Cell Proliferation/drug effects , Mice, Inbred C57BL , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism
8.
Int J Biol Sci ; 20(5): 1688-1704, 2024.
Article in English | MEDLINE | ID: mdl-38481807

ABSTRACT

Background: Melanocortin 1 receptor (MC1R), a receptor of α-melanocyte-stimulating hormone (α-MSH), is exclusively present in melanocytes where α-MSH/MC1R stimulate melanin pigmentation through microphthalmia-associated transcription factor M (MITF-M). Toll-like receptor 4 (TLR4), a receptor of endotoxin lipopolysaccharide (LPS), is distributed in immune and other cell types including melanocytes where LPS/TLR4 activate transcriptional activity of nuclear factor (NF)-κB to express cytokines in innate immunity. LPS/TLR4 also up-regulate MITF-M-target melanogenic genes in melanocytes. Here, we propose a molecular target of antimelanogenic activity through elucidating inhibitory mechanism on α-MSH-induced melanogenic programs by benzimidazole-2-butanol (BI2B), an inhibitor of LPS/TLR4-activated transcriptional activity of NF-κB. Methods: Ultraviolet B (UV-B)-irradiated skins of HRM-2 hairless mice and α-MSH-activated melanocyte cultures were employed to examine melanogenic programs. Results: Topical treatment with BI2B ameliorated UV-B-irradiated skin hyperpigmentation in mice. BI2B suppressed the protein or mRNA levels of melanogenic markers, such as tyrosinase (TYR), MITF-M and proopiomelanocortin (POMC), in UV-B-exposed and pigmented skin tissues. Moreover, BI2B inhibited melanin pigmentation in UV-B-irradiated co-cultures of keratinocyte and melanocyte cells and that in α-MSH-activated melanocyte cultures. Mechanistically, BI2B inhibited the activation of cAMP response element-binding protein (CREB) in α-MSH-induced melanogenic programs and suppressed the expression of MITF-M at the promoter level. As a molecular target, BI2B primarily inhibited mitogen-activated protein kinase (MAPK) kinase 3 (MKK3)-catalyzed kinase activity on p38MAPK. Subsequently, BI2B interrupted downstream pathway of p38MAPK-mitogen and stress-activated protein kinase-1 (MSK1)-CREB-MITF-M, and suppressed MITF-M-target melanogenic genes, encoding enzymes TYR, TYR-related protein-1 (TRP-1) and dopachrome tautomerase (DCT) in melanin biosynthesis, and encoding proteins PMEL17 and Rab27A in the transfer of pigmented melanosomes to the overlaying keratinocytes in the skin. Conclusion: Targeting the MKK3-p38MAPK-MSK1-CREB-MITF-M pathway was suggested as a rationale to inhibit UV-B- or α-MSH-induced facultative melanogenesis and as a strategy to prevent acquired pigmentary disorders in the skin.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Hyperpigmentation , Animals , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Melanins/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , alpha-MSH/pharmacology , alpha-MSH/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Lipopolysaccharides/toxicity , Melanocytes/metabolism , Hyperpigmentation/drug therapy , Hyperpigmentation/metabolism , Monophenol Monooxygenase/metabolism , Cell Line, Tumor
10.
Life Sci ; 342: 122534, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38408637

ABSTRACT

AIMS: Sphingolipids are involved in the regulation of insulin signaling, which is linked to the development of insulin resistance, leading to diabetes mellitus. We aimed to study whether modulation of sphingolipid levels by GT-11 may regulate insulin signaling in C2C12 myotubes. MAIN METHODS: We investigated the effects of sphingolipid metabolism on Akt phosphorylation and glucose uptake using C2C12 myotubes. Either GT-11, an inhibitor of dihydroceramide desaturase 1 and S1P lyase, or siRNA targeting Sgpl1, the gene encoding the enzyme, was employed to determine the effect of sphingolipid metabolism modulation on insulin signaling. Western blotting and glucose uptake assays were used to evaluate the effect of treatments on insulin signaling. Sphingolipid metabolites were analyzed by high performance liquid chromatography (HPLC). KEY FINDINGS: Treatment with GT-11 resulted in decreased Akt phosphorylation and reduced glucose uptake. Silencing the Sgpl1 gene, which encodes S1P lyase, mimicked these findings, suggesting the potential for regulating insulin signaling through S1P lyase modulation. GT-11 modulated sphingolipid metabolism, inducing the accumulation of sphingolipids. Using PF-543 and ARN14974 to inhibit sphingosine kinases and acid ceramidase, respectively, we identified a significant interplay between sphingosine, S1P lyase, and insulin signaling. Treatment with either exogenous sphingosine or palmitic acid inhibited Akt phosphorylation, and reduced S1P lyase activity. SIGNIFICANCE: Our findings highlight the importance of close relationship between sphingolipid metabolism and insulin signaling in C2C12 myotubes, pointing to its potential therapeutic relevance for diabetes mellitus.


Subject(s)
Diabetes Mellitus , Lyases , Humans , Insulin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sphingosine/metabolism , Sphingolipids/metabolism , Muscle Fibers, Skeletal/metabolism , Glucose/metabolism , Lyases/metabolism , Lyases/pharmacology , Diabetes Mellitus/metabolism , Lysophospholipids/metabolism
11.
Exp Mol Med ; 56(1): 1-18, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177294

ABSTRACT

Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly upregulated by various inflammatory and immunological diseases, including several cancers, Alzheimer's disease, and atherosclerosis. Several studies have shown that CHI3L1 can be considered as a marker of disease diagnosis, prognosis, disease activity, and severity. In addition, the proinflammatory action of CHI3L1 may be mediated via responses to various proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1ß, interleukin-6, and interferon-γ. Therefore, CHI3L1 may contribute to a vast array of inflammatory diseases. However, its pathophysiological and pharmacological roles in the development of inflammatory diseases remain unclear. In this article, we review recent findings regarding the roles of CHI3L1 in the development of inflammatory diseases and suggest therapeutic approaches that target CHI3L1.


Subject(s)
Chitinases , Neoplasms , Humans , Chitinase-3-Like Protein 1/genetics , Neoplasms/genetics , Neoplasms/metabolism , Inflammation/metabolism , Cytokines
12.
CNS Neurosci Ther ; 30(2): e14370, 2024 02.
Article in English | MEDLINE | ID: mdl-37501340

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is the most common form of dementia. Depression is one of the most critical psychiatric complications of AD, and 20%-30% of patients with AD experience symptoms of depression. Phospho-glycogen synthase kinase-3 beta (GSK3ß) is known to be associated with AD and depression. Furthermore, the role of disheveled (DVL) is known to regulate GSK3ß. Moreover, presenilin-2 (PS2) and DVL have cross-talk with each other. Also, it is widely hypothesized that stress leads to hypersecretion of cortisol and is thus associated with depression. Dickkopf WNT signaling pathway inhibitor-1 (DKK-1) is a crucial factor regulating depression and both amyloid beta (Aß) and phosphorylation of tau are widely known as a biomarker of AD. METHODS: To investigate the relationship between AD and depression, and possible pathways connecting the two diseases, we examined memory function and depression-related behavior test results in PS2 knock-in AD mice (PS2 MT). Next, we confirmed that there are relationships between DVL, depression, and cognitive disease through the comparative toxicogenomics database (https://ctdbase.org) and STRING (https://string-db.org) database. RESULTS: PS2 knock-in mice showed much more severe memory impairment and depression than PS2 wild-type mice (PS2 WT). In AD-related behavioral experiments, PS2 MT mice showed more memory dysfunction compared with PS2 WT group mice. Moreover, Aß and phosphorylation of tau showed higher expression in PS2 MT mice than in PS2 WT mice. Depression-related behavioral tests showed that PS2 MT mice exhibited more depressive behaviors than PS2 WT mice. Furthermore, both higher cortisol levels and higher expression of DKK-1 were found in PS2 MT mice relative to PS2 WT mice. The results indicated that there is a relationship between DVL and the release of AD-related mediators and expression of the depression-related glucocorticoid receptor and DKK-1. In the PS2 knock-in group, DVL was significantly decreased compared with the PS2 WT group. CONCLUSION: Depression increases the risk of developing AD and other forms of dementia. Recent evidence indicates that depression symptoms could trigger changes in memory and thinking over time. However, it is recognized that there are no drugs to facilitate a full recovery for both AD and depression. However, our results suggest that AD and depression could be associated, and DVL could be a significant target for the association between AD and depression.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Dishevelled Proteins/metabolism , Down-Regulation , Glycogen Synthase Kinase 3 beta , Hydrocortisone , Mice, Transgenic , Presenilin-1/genetics , Presenilin-2/metabolism
13.
J Microbiol Biotechnol ; 34(2): 240-248, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37942548

ABSTRACT

In cancer treatment, multi-target approach has paid attention to a reasonable strategy for the potential agents. We investigated whether (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) could exert an anticancer effect by dual-regulating VEGFR2 and PPARγ. MMPP showed modulating effects in TNBC type (MDA-MB-231 and MDA-MB-468) and luminal A type (MCF7) breast cancer cell lines. MMPP enhanced PPARγ transcriptional activity and inhibited VEGFR2 phosphorylation. MMPP-induced signaling by VEGFR2 and PPARγ ultimately triggered the downregulation of AKT activity. MMPP exhibited anticancer effects, as evidenced by growth inhibition, inducement of apoptosis, and suppression of migration and invasion. At the molecular level, MMPP activated pro-apoptotic proteins (caspase3, caspase8, caspase9, and bax), while inhibiting the anti-apoptotic proteins (bcl2). Additionally, MMPP inhibited the mRNA expressions of EMT-promoting transcription factors. Therefore, our findings showed molecular mechanisms of MMPP by regulating VEGFR2 and PPARγ, and suggested that MMPP has potential to treat breast cancer.


Subject(s)
Breast Neoplasms , Phthalic Acids , Humans , Female , Breast Neoplasms/drug therapy , PPAR gamma/genetics , Phenol/pharmacology , Phenols/pharmacology , Apoptosis , Apoptosis Regulatory Proteins , Cell Line, Tumor , Cell Proliferation , Cell Movement
14.
Biofactors ; 50(2): 294-310, 2024.
Article in English | MEDLINE | ID: mdl-37658685

ABSTRACT

Breast cancer is a frequently diagnosed cancer and the leading cause of death among women worldwide. Tumor-associated macrophages stimulate cytokines and chemokines, which induce angiogenesis, metastasis, proliferation, and tumor-infiltrating immune cells. Although interleukin-32 (IL-32) has been implicated in the development and modulation of several cancers, its function in breast cancer remains elusive. Mutation of interleukin-32θ (IL-32θ) in the tissues of patients with breast cancer was detected by Sanger sequencing. RT-qPCR was used to detect the mRNA levels of inflammatory cytokines, chemokines, and mediators. The secreted proteins were detected using respective enzyme-linked immunosorbent assays. Evaluation of the inhibitory effect of mutant IL-32θ on proliferation, migration, epithelial-mesenchymal transition (EMT), and cell cycle arrest in breast cancer cells was conducted using MTS assays, migration assays, and Western blotting. A point mutation (281C>T, Ala94Val) was detected in IL-32θ in both breast tumors and adjacent normal tissues, which suppressed the expression of pro-inflammatory factors, EMT factors, and cell cycle related factors. Mutated IL-32θ inhibited the expression of inflammatory factors by regulating the NF-κB pathway. Furthermore, mutated IL-32θ suppressed EMT markers and cell cycle related factors through the FAK/PI3K/AKT pathway. It was inferred that mutated IL-32θ modulates breast cancer progression. Mutated IL-32θ (A94V) inhibited inflammation, EMT, and proliferation in breast cancer by regulating the NF-κB (p65/p50) and FAK-PI3K-GSK3 pathways.


Subject(s)
Breast Neoplasms , Interleukins , Triple Negative Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Chemokines , Epithelial-Mesenchymal Transition/genetics , Glycogen Synthase Kinase 3/metabolism , Interleukins/genetics , Interleukins/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
15.
BMB Rep ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964635

ABSTRACT

Many types of cancer are associated with excessive angiogenesis. Anti-angiogenic treatment is an effective strategy for treating solid cancers. This study aimed to demonstrate the inhibitory effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) in VEGFA-induced angiogenesis. The results indicated that MMPP effectively suppressed various angiogenic processes, such as cell migration, invasion, tube formation, and sprouting of new vessels in human umbilical vein endothelial cells (HUVECs) and mouse aortic ring. The inhibitory mechanism of MMPP on angiogenesis involves targeting VEGFR2. MMPP showed high binding affinity for the VEGFR2 ATP-binding domain. Additionally, MMPP improved VEGFR2 thermal stability and inhibited VEGFR2 kinase activity, suppressing the downstream VEGFR2/AKT/ERK pathway. MMPP attenuated the activation and nuclear translocation of NF-κB, and it downregulated NF-κB target genes such as VEGFA, VEGFR2, MMP2, and MMP9. Furthermore, conditioned medium from MMPP-treated breast cancer cells effectively inhibited angiogenesis in endothelial cells. These results suggested that MMPP had great promise as a novel VEGFR2 inhibitor with potent anti-angiogenic properties for cancer treatment via VEGFR2/AKT/ERK/NF-κB signaling pathway.

16.
Int Immunopharmacol ; 125(Pt A): 111124, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977740

ABSTRACT

Sepsis is a life-threatening disease with limited treatment options, and the inflammatory process represents an important factor affecting its progression. Many studies have demonstrated the critical roles of signal transducer and activator of transcription 3 (STAT3) in sepsis pathophysiology and pro-inflammatory responses. Inhibition of STAT3 activity may therefore represent a promising treatment option for sepsis. We here used a mouse model to demonstrate that (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) treatment prevented the liver sepsis-related mortality induced by 30 mg/kg lipopolysaccharide (LPS) treatment and reduced LPS-induced increase in alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels, all of which are markers of liver sepsis progression. These recovery effects were associated with decreased LPS-induced STAT3, p65, and JAK1 phosphorylation and proinflammatory cytokine (interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha) level; expression of cyclooxygenase-2 and induced nitric oxide synthase were also reduced by MMPP. In an in vitro study using the normal liver cell line THLE-2, MMPP treatment prevented the LPS-induced increase of STAT3, p65, and JAK1 phosphorylation and inflammatory protein expression in a dose-dependent manner, and this effect was enhanced by combination treatment with MMPP and STAT3 inhibitor. The results clearly indicate that MMPP treatment prevents LPS-induced mortality by inhibiting the inflammatory response via STAT3 activity inhibition. Thus, MMPP represents a novel agent for alleviating LPS-induced liver sepsis.


Subject(s)
Sepsis , Signal Transduction , Mice , Animals , Lipopolysaccharides/pharmacology , Phenol/metabolism , Phenol/pharmacology , Phosphorylation , STAT3 Transcription Factor/metabolism , Phenols/pharmacology , Phenols/therapeutic use , Liver/metabolism , Sepsis/chemically induced , Sepsis/drug therapy , Sepsis/metabolism
17.
Biomed Pharmacother ; 169: 115860, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37948992

ABSTRACT

Intracranial self-stimulation (ICSS) of the medial forebrain bundle in mice is an experimental model use to assess the relative potential of reward-seeking behaviors. Here, we used the ICSS model to evaluate the abuse potential of 18 abused drugs: 3-Fluoroethamphetamine (3-FEA); methylphenidate; cocaine; dextroamphetamine; alpha-Pyrrolidinobutyrophenone (α-PBT); 4'-Fluoro-4-methylaminorex (4-FPO); methamphetamine; larocaine; phentermine; paramethoxymethamphetamine (PMMA); phendimetrazine; N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (AKB-48); Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (CB-13); 4-Ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-210); Naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018); N-(ortho-methoxybenzyl)-4-ethylamphetamine (4-EA-NBOMe); N-[(2-Methoxyphenyl)methyl]-N-methyl-1-(4-methylphenyl)propan-2-amine (4-MMA-NBOMe); and 1-[1-(4-methoxyphenyl)cyclohexyl]piperidine (4-MeO-PCP). We determined dopamine transporter (DAT) availability in the medial prefrontal cortex (mPFC), striatum, and nucleus accumbens (NAc) after drug treatment. DAT availability in the mPFC and NAc significantly correlated with the ICSS threshold after drug treatment. Extracellular dopamine and calcium levels in PC-12 cells were measured following drug treatment. After drug treatment, Spearman rank and Pearson correlation analyses showed a significant difference between the extracellular dopamine level and the ICSS threshold. After drug treatment, Spearman rank correlation analysis showed a significant correlation between Ca2+ signaling and the ICSS threshold. A positive correlation exists between the ICSS threshold and DAT availability in the mPFC and NAc provoked by abused drugs. The relative potential of drug-induced reward-seeking behavior may be related to DAT availability-mediated extracellular dopamine levels in the mPFC and NAc.


Subject(s)
Nucleus Accumbens , Self Stimulation , Animals , Mice , Dopamine , Dopamine Plasma Membrane Transport Proteins , Prefrontal Cortex , Self Stimulation/physiology
18.
Int J Mol Sci ; 24(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894967

ABSTRACT

In individuals with Alzheimer's disease, the brain exhibits elevated levels of IL-1ß and oxygenated cholesterol molecules (oxysterols). This study aimed to investigate the effects of side-chain oxysterols on IL-1ß expression using HMC3 microglial cells and ApoE-deficient mice. Treatment of HMC3 cells with 25-hydroxycholesterol (25OHChol) and 27-hydroxycholesterol (27OHChol) led to increased IL-1ß expression at the transcript and protein levels. Additionally, these oxysterols upregulated the surface expression of MHC II, a marker of activated microglia. Immunohistochemistry performed on the mice showed increased microglial expression of IL-1ß and MHC II when fed a high-cholesterol diet. However, cholesterol and 24s-hydroxycholesterol did not increase IL-1ß transcript levels or MHC II expression. The extent of IL-1ß increase induced by 25OHChol and 27OHChol was comparable to that caused by oligomeric ß-amyloid, and the IL-1ß expression induced by the oxysterols was not impaired by polymyxin B, which inhibited lipopolysaccharide-induced IL-1ß expression. Both oxysterols enhanced the phosphorylation of Akt, ERK, and Src, and inhibition of these kinase pathways with pharmacological inhibitors suppressed the expression of IL-1ß and MHC II. The pharmacological agents chlorpromazine and cyclosporin A also impaired the oxysterol-induced expression of IL-1ß and upregulation of MHC II. Overall, these findings suggest that dysregulated cholesterol metabolism leading to elevated levels of side-chain oxysterols, such as 25OHChol and 27OHChol, can activate microglia to secrete IL-1ß through a mechanism amenable to pharmacologic intervention. The activation of microglia and subsequent neuroinflammation elicited by the immune oxysterols can contribute to the development of neurodegenerative diseases.


Subject(s)
Microglia , Oxysterols , Animals , Mice , Microglia/metabolism , Oxysterols/metabolism , Neuroinflammatory Diseases , Macrophages/metabolism , Brain/metabolism
19.
Adv Sci (Weinh) ; 10(35): e2302775, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37752815

ABSTRACT

The growing demand for soft intelligent systems, which have the potential to be used in a variety of fields such as wearable technology and human-robot interaction systems, has spurred the development of advanced soft transducers. Among soft systems, sensor-actuator hybrid systems are considered the most promising due to their effective and efficient performance, resulting from the synergistic and complementary interaction between their sensor and actuator components. Recent research on integrated sensor and actuator systems has resulted in a range of conceptual and practical soft systems. This review article provides a comprehensive analysis of recent advances in sensor and actuator integrated systems, which are grouped into three categories based on their primary functions: i) actuator-assisted sensors for intelligent detection, ii) sensor-assisted actuators for intelligent movement, and iii) sensor-actuator interactive devices for a hybrid of intelligent detection and movement. In addition, several bottlenecks in current studies are discussed, and prospective outlooks, including potential applications, are presented. This categorization and analysis will pave the way for the advancement and commercialization of sensor and actuator-integrated systems.

20.
Sci Rep ; 13(1): 13074, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37567910

ABSTRACT

Nephritis is common in systemic lupus erythematosus patients and is associated with hyper-activation of immune and renal cells. Although mesenchymal stem cells (MSCs) ameliorate nephritis by inhibiting T and B cells, whether MSCs directly affect renal cells is unclear. To address this issue, we examined the direct effect of MSCs on renal cells with a focus on chemokines. We found that expression of CCL2, CCL3, CCL4, CCL5, CCL8, CCL19, and CXCL10 increased 1.6-5.6-fold in the kidney of lupus-prone MRL.Faslpr mice with advancing age from 9 to 16 weeks. Although MSCs inhibited the increase in the expression of most chemokines by 52-95%, they further increased CCL8 expression by 290%. Using renal cells, we next investigated how MSCs enhanced CCL8 expression. CCL8 was expressed by podocytes, but not by tubular cells. MSCs enhanced CCL8 expression by podocytes in a contact-dependent manner, which was proved by transwell assay and blocking with anti-VCAM-1 antibody. Finally, we showed that CCL8 itself activated MSCs to produce more immunosuppressive factors (IL-10, IDO, TGF-ß1, and iNOS) and to inhibit more strongly IFN-γ production by T cells. Taken together, our data demonstrate that MSCs activate podocytes to produce CCL8 in a contact-dependent manner and conversely, podocyte-derived CCL8 might potentiate immunosuppressive activity of MSCs in a paracrine fashion. Our study documents a previously unrecognized therapeutic mechanism of MSCs in nephritis.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Mesenchymal Stem Cells , Podocytes , Animals , Mice , Chemokines/metabolism , Mice, Inbred MRL lpr , Podocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...