Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 4: 137-148, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28344999

ABSTRACT

To develop an effective and sustainable cell therapy for sickle cell disease (SCD), we investigated the feasibility of targeted disruption of the BCL11A gene, either within exon 2 or at the GATAA motif in the intronic erythroid-specific enhancer, using zinc finger nucleases in human bone marrow (BM) CD34+ hematopoietic stem and progenitor cells (HSPCs). Both targeting strategies upregulated fetal globin expression in erythroid cells to levels predicted to inhibit hemoglobin S polymerization. However, complete inactivation of BCL11A resulting from bi-allelic frameshift mutations in BCL11A exon 2 adversely affected erythroid enucleation. In contrast, bi-allelic disruption of the GATAA motif in the erythroid enhancer of BCL11A did not negatively impact enucleation. Furthermore, BCL11A exon 2-edited BM-CD34+ cells demonstrated a significantly reduced engraftment potential in immunodeficient mice. Such an adverse effect on HSPC function was not observed upon BCL11A erythroid-enhancer GATAA motif editing, because enhancer-edited CD34+ cells achieved robust long-term engraftment and gave rise to erythroid cells with elevated levels of fetal globin expression when chimeric BM was cultured ex vivo. Altogether, our results support further clinical development of the BCL11A erythroid-specific enhancer editing in BM-CD34+ HSPCs as an autologous stem cell therapy in SCD patients.

2.
Bioconjug Chem ; 24(4): 684-9, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23566039

ABSTRACT

Copper-catalyzed azide-alkyne cycloaddition (CuAAC) has found numerous applications in a variety of fields. We report here only modest differences in the reactivity of various classes of terminal alkynes under typical bioconjugative and preparative organic conditions. Propargyl compounds represent an excellent combination of azide reactivity, ease of installation, and cost. Electronically activated propiolamides are slightly more reactive, at the expense of increased propensity for Michael addition. Certain alkynes, including tertiary propargyl carbamates, are not suitable for bioconjugation due to copper-induced fragmentation. A fluorogenic probe based on such reactivity is available in one step from rhodamine 110 and can be useful for optimization of CuAAC conditions.


Subject(s)
Alcohols/chemical synthesis , Alkynes/chemistry , Azides/chemistry , Copper/chemistry , Alcohols/chemistry , Azides/chemical synthesis , Catalysis , Cyclization , Molecular Structure
3.
J Am Chem Soc ; 134(14): 6491-7, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22455380

ABSTRACT

Oxanorbornadienedicarboxylate (OND) reagents were explored for purposes of binding and releasing drugs from serum albumins as representative macromolecular carriers. Being highly reactive Michael acceptors, ONDs form adducts with thiols and amines, which then undergo retro-Diels-Alder fragmentation. A study of more than 30 model adducts revealed a number of modifications that can be used to influence adduct stability. For the most reactive OND linkers, the labeling of the single available bovine serum albumin (BSA) cysteine residue was complete within minutes at a mid-micromolar concentration of reactants. While a selectivity of greater than 1000-fold for thiol over amine was observed with model amino acids, the labeling of protein amines with ONDs is fast enough to be practical, as demonstrated by the reaction with thiol-depleted BSA. The OND-amine adducts were found to be up to 15 times more stable than OND-thiol adducts, and to be sensitive to acid by virtue of a stereochemically dependent acceleration of cycloreversion. The release rate of fluorescent cargo from serum albumins was tuned by selecting the coupling partners: the available half-lives ranged from 40 min to 7 days at 37 °C. Such versatility of release profiles from protein carriers, controlled by the nature of the OND linkage, is a useful addition to the drug delivery toolbox.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Carboxylic Acids/chemistry , Serum Albumin/chemistry , Amines/chemistry , Amino Acids/chemistry , Animals , Cattle , Chemistry, Organic/methods , Chemistry, Pharmaceutical/methods , Drug Delivery Systems , Fluorescent Dyes/chemistry , Humans , Hydrogen Bonding , Kinetics , Protein Structure, Tertiary , Sulfhydryl Compounds/chemistry , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL