Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-23366276

ABSTRACT

Applying neuromuscular electrical stimulation (NMES) during treadmill training (TT) has been shown to improve functional outcomes, such as gait speed and walking distance, in spinal cord injury (SCI) patients. However, ways to improve this combined NMES+TT therapy have not been investigated. We have developed NMES system for a rodent model of SCI to investigate whether and how more precisely timing the stimulation to robotically assisted hindlimb position might achieve rehabilitation of independent stepping after SCI. In our therapy (NMES+RTT), rodent ankle flexor muscles are stimulated while the hindlimbs are robotically driven through pre-programmed trajectories during treadmill training. The objectives of the work presented here were to quantify changes in step trajectory resulting from our combined NMES+RTT therapy and compare those effects with those induced by robotic treadmill training (RTT) alone. Animals were spinally contused to model severe SCI, and either received 2 weeks of NMES+RTT followed by 2 weeks of RTT (n=6) or 2 weeks of RTT followed by 2 weeks of NMES+RTT (n=7). Changes in step trajectories after training were analyzed. According to a deviation measure we developed, the step trajectories improved after either NMES+RTT or RTT training but more closely matched the desired pre-programmed trajectories after NMES+RTT than after RTT only. The step trajectories are also more consistent, as indicated by a coefficient of variation measure, after training and more so after NMES+RTT than after RTT only. These preliminary results from our NMES+RTT vs. RTT study are consistent with the hypothesis that appropriately timing NMES with hindlimb movements during stepping is an effective therapy for restoring the ability to step after spinal cord injury.


Subject(s)
Neuromuscular Junction/physiopathology , Physical Conditioning, Animal , Robotics , Spinal Cord Injuries/physiopathology , Animals , Electric Stimulation , Female , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL