Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Physiol Rep ; 10(8): e15265, 2022 04.
Article in English | MEDLINE | ID: mdl-35439358

ABSTRACT

Heterozygous missense variants of the cardiac ryanodine receptor gene (RYR2) cause catecholaminergic polymorphic ventricular tachycardia (CPVT). These missense variants of RYR2 result in a gain of function of the ryanodine receptors, characterized by increased sensitivity to activation by calcium that results in an increased propensity to develop calcium waves and delayed afterdepolarizations. We have recently detected a nonsense variant in RYR2 in a young patient who suffered an unexplained cardiac arrest. To understand the mechanism by which this variant in RYR2, p.(Arg4790Ter), leads to ventricular arrhythmias, human induced pluripotent stem cells (hiPSCs) harboring the novel nonsense variant in RYR2 were generated and differentiated into cardiomyocytes (RYR2-hiPSC-CMs) and molecular and calcium handling properties were studied. RYR2-hiPSC-CMs displayed significant calcium handling abnormalities at baseline and following treatment with isoproterenol. Treatment with carvedilol and nebivolol resulted in a significant reduction in calcium handling abnormalities in the RYR2-hiPSC-CMs. Expression of the mutant RYR2 allele was confirmed at the mRNA level and partial silencing of the mutant allele resulted in a reduction in calcium handling abnormalities at baseline. The nonsense variant behaves similarly to other gain of function variants in RYR2. Carvedilol and nebivolol may be suitable treatments for patients with gain of function RYR2 variants.


Subject(s)
Induced Pluripotent Stem Cells , Ryanodine Receptor Calcium Release Channel , Calcium/metabolism , Calcium Signaling , Carvedilol , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Myocytes, Cardiac/metabolism , Nebivolol/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism
2.
J Hum Genet ; 65(6): 531-539, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32152366

ABSTRACT

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is predominantly caused by heterozygous missense variants in the cardiac ryanodine receptor, RYR2. However, many RYR2 missense variants are classified as variants of uncertain significance (VUS). We systematically re-evaluated all RYR2 variants in healthy individuals and those with CPVT or arrhythmia using the 2015 American College of Medical Genomics guidelines. RYR2 variants were identified by the NW Genomic Laboratory Hub, from the published literature and databases of sequence variants. Each variant was assessed based on minor allele frequencies, in silico prediction tools and appraisal of functional studies and classified according to the ACMG-AMP guidelines. Phenotype data was collated where available. Of the 326 identified RYR2 missense variants, 55 (16.9%), previously disease-associated variants were reclassified as benign. Application of the gnomAD database of >140,000 controls allowed reclassification of 11 variants more than the ExAC database. CPVT-associated RYR2 variants clustered predominantly between amino acid positions 3949-4332 and 4867-4967 as well as the RyR and IP3R homology-associated and ion transport domains (p < 0.005). CPVT-associated RYR2 variants occurred at more conserved amino acid positions compared with controls, and variants associated with sudden death had higher conservation scores (p < 0.005). There were five potentially pathogenic RYR2 variants associated with sudden death during sleep which were located almost exclusively in the C-terminus of the protein. In conclusion, control sequence databases facilitate reclassification of RYR2 variants but the majority remain as VUS. Notably, pathogenic variants in RYR2 are associated with death in sleep.


Subject(s)
Death, Sudden, Cardiac/epidemiology , Genetic Predisposition to Disease , Ryanodine Receptor Calcium Release Channel/genetics , Tachycardia, Ventricular/genetics , Death, Sudden, Cardiac/pathology , Female , Gene Frequency , Genetic Variation , Genomics , Humans , Male , Mutation, Missense/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Tachycardia, Ventricular/epidemiology , Tachycardia, Ventricular/pathology
SELECTION OF CITATIONS
SEARCH DETAIL