Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 106(1): 27-32, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18691527

ABSTRACT

Chlorinated organophosphate ester (OPE)-degrading enrichment cultures were obtained using tris(2-chloroethyl) phosphate (TCEP) or tris(1,3-dichloro-2-propyl) phosphate (TDCPP) as the sole phosphorus source. In cultures with 46 environmental samples, significant TCEP and TDCPP degradation was observed in 10 and 3 cultures, respectively, and successive subcultivation markedly increased their degradation rates. 67E and 45D stable enrichment cultures obtained with TCEP and TDCPP, respectively, completely degraded 20 muM of the respective compounds within 6 h and also the other, although the degradation rate of TCEP by 45D was relatively slow. We confirmed chloride ion generation on degradation in both cases and the generation of 2-chloroethanol (2-CE) and 1,3-dichloro-2-propanol (1,3-DCP) as metabolites of TCEP and TDCPP, respectively. 67E and 45D also showed dehalogenation ability toward 2-CE and 1,3-DCP, respectively. Addition of inorganic phosphate did not significantly influence their ability to degrade the chlorinated OPEs but markedly increased their dehalogenation ability, which was maximum at 0.2 mM of inorganic phosphate and decreased at a higher concentration. Denaturing gradient gel electrophoresis analysis showed that dominant bacteria in 67E are related to Acidovorax spp. and Sphingomonas spp. and those in 45D are Acidovorax spp., Aquabacterium spp., and Sphingomonas spp. This analysis indicated the relationship of the Sphingomonas- and Acidovorax-related bacteria with the cleavage of the phosphoester bond and dehalogenation, respectively, in both cultures. This is the first report on bacterial enrichment cultures capable of degrading both TCEP and TDCPP.


Subject(s)
Coculture Techniques/methods , Comamonadaceae/physiology , Hydrocarbons, Chlorinated/metabolism , Industrial Waste/prevention & control , Organophosphates/metabolism , Soil Microbiology , Sphingomonas/physiology , Biodegradation, Environmental , Cell Proliferation , Comamonadaceae/cytology , Sphingomonas/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...