Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Radiol Case Rep ; 19(6): 2520-2524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38585406

ABSTRACT

The reversed halo sign was initially reported as a representative computed tomography scan finding of cryptogenic organizing pneumonia. Since then, however, it has been reported in various diseases and is now considered a nonspecific finding. However, there are no cases of humidifier lung with the reversed halo sign. An 82-year-old Japanese male patient presented with moving difficulties 48 days after starting darolutamide treatment for prostate cancer. He was admitted to the hospital due to acute pneumonia, which presented as bilateral extensive nonsegmental ground-glass opacities in the peripheral regions and extensive areas of ground-glass opacity with a circumferential halo of consolidation, with the reversed halo sign on computed tomography scan. After darolutamide discontinuation with the concomitant administration of antibiotics, the patient's pneumonia improved, and he was discharged from the hospital. However, within a few days, he was again admitted to the hospital due to pneumonia. He was found to have been using an ultrasonic humidifier at home and was then diagnosed with humidifier lung based on the bronchoscopy and provocative testing findings. Hence, ultrasonic humidifier lung should be considered as a differential diagnosis in patients presenting with the reversed halo sign, and a detailed medical history must be taken.

2.
PLoS One ; 18(2): e0281249, 2023.
Article in English | MEDLINE | ID: mdl-36795727

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) pneumonia can have prolonged sequelae and lead to respiratory dysfunction, mainly because of impaired diffusion capacity for carbon monoxide (DLCO). The clinical factors associated with DLCO impairment, including blood biochemistry test parameters, remain unclear. METHODS: Patients with COVID-19 pneumonia who underwent inpatient treatment between April 2020 and August 2021 were included in this study. A pulmonary function test was performed 3 months after onset, and the sequelae symptoms were investigated. Clinical factors, including blood test parameters and abnormal chest shadows on computed tomography, of COVID-19 pneumonia associated with DLCO impairment were investigated. RESULTS: In total, 54 recovered patients participated in this study. Twenty-six patients (48%) and 12 patients (22%) had sequelae symptoms 2 and 3 months after, respectively. The main sequelae symptoms at 3 months were dyspnea and general malaise. Pulmonary function tests showed that 13 patients (24%) had both DLCO <80% predicted value (pred) and DLCO/alveolar volume (VA) <80% pred, and appeared to have DLCO impairment not attributable to an abnormal lung volume. Clinical factors associated with impaired DLCO were investigated in multivariable regression analysis. Ferritin level of >686.5 ng/mL (odds ratio: 11.08, 95% confidence interval [CI]: 1.84-66.59; p = 0.009) was most strongly associated with DLCO impairment. CONCLUSIONS: Decreased DLCO was the most common respiratory function impairment, and ferritin level was a significantly associated clinical factor. Serum ferritin level could be used as a predictor of DLCO impairment in cases of COVID-19 pneumonia.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Respiratory Function Tests/methods , Respiration , Ferritins , Lung/diagnostic imaging , Pulmonary Diffusing Capacity
3.
J Cachexia Sarcopenia Muscle ; 13(3): 1864-1882, 2022 06.
Article in English | MEDLINE | ID: mdl-35373498

ABSTRACT

BACKGROUND: Sarcopenia is characterized by the loss of skeletal muscle mass and strength and is associated with poor prognosis in patients with chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) exposure, a major cause for COPD, induces mitochondrial damage, which has been implicated in sarcopenia pathogenesis. The current study sought to examine the involvement of insufficient Parkin-mediated mitophagy, a mitochondrion-selective autophagy, in the mechanisms by which dysfunctional mitochondria accumulate with excessive reactive oxygen species (ROS) production in the development of COPD-related sarcopenia. METHODS: The involvement of Parkin-mediated mitophagy was examined using in vitro models of myotube formation, in vivo CS-exposure model using Parkin-/- mice, and human muscle samples from patients with COPD-related sarcopenia. RESULTS: Cigarette smoke extract (CSE) induced myotube atrophy with concomitant 30% reduction in Parkin expression levels (P < 0.05). Parkin-mediated mitophagy regulated myotube atrophy by modulating mitochondrial damage and mitochondrial ROS production. Increased mitochondrial ROS was responsible for myotube atrophy by activating Muscle Ring Finger 1 (MuRF-1)-mediated myosin heavy chain (MHC) degradation. Parkin-/- mice with prolonged CS exposure showed enhanced limb muscle atrophy with a 31.7% reduction in limb muscle weights (P < 0.01) and 2.3 times greater MuRF-1 expression (P < 0.01) compared with wild-type mice with concomitant accumulation of damaged mitochondria and oxidative modifications in 4HNE expression. Patients with COPD-related sarcopenia exhibited significantly reduced Parkin but increased MuRF-1 protein levels (35% lower and 2.5 times greater protein levels compared with control patients, P < 0.01 and P < 0.05, respectively) and damaged mitochondria accumulation demonstrated in muscles. Electric pulse stimulation-induced muscle contraction prevented CSE-induced MHC reduction by maintaining Parkin levels in myotubes. CONCLUSIONS: Taken together, COPD-related sarcopenia can be attributed to insufficient Parkin-mediated mitophagy and increased mitochondrial ROS causing enhanced muscle atrophy through MuRF-1 activation, which may be at least partly preventable through optimal physical exercise.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Sarcopenia , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Mice, Inbred C57BL , Mitophagy/physiology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Reactive Oxygen Species/metabolism , Sarcopenia/metabolism , Sarcopenia/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Respir Med ; 192: 106738, 2022 02.
Article in English | MEDLINE | ID: mdl-35051876

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a major comorbid disease of Mycobacterium avium complex pulmonary disease (MAC-PD). Emphysema is one of the main pathological findings in COPD, a risk factor for chronic pulmonary aspergillosis (CPA), and is associated with poor prognosis. We aimed to clarify the effect of emphysema on mortality in MAC-PD. METHODS: We retrospectively analyzed 203 patients with MAC-PD at The Jikei Daisan Hospital between January 2014 and December 2018. We investigated the mortality and CPA development rates after MAC-PD diagnosis in patients with or without emphysema. RESULTS: Multivariate Cox proportional hazards regression analysis showed the following negative prognostic factors in patients with MAC-PD: emphysema (hazard ratio [HR]: 11.46; 95% confidence interval [CI]: 1.30-100.90; P = 0.028); cavities (HR: 3.12; 95% CI: 1.22-7.94; P = 0.017); and low body mass index (<18.5 kg/m2) (HR: 4.62; 95% CI: 1.63-13.11; P = 0.004). The mortality and occurrence of CPA were higher in MAC-PD patients with than without emphysema (log-rank test, P < 0.0001 and P < 0.0001). CONCLUSION: Our study findings showed that emphysema detected by computed tomography was associated with an increased risk of CPA development and mortality in MAC-PD.


Subject(s)
Emphysema , Lung Diseases , Mycobacterium avium-intracellulare Infection , Pulmonary Emphysema , Humans , Lung Diseases/complications , Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection/complications , Mycobacterium avium-intracellulare Infection/diagnostic imaging , Mycobacterium avium-intracellulare Infection/epidemiology , Prognosis , Pulmonary Emphysema/complications , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/epidemiology , Retrospective Studies
5.
Inflamm Regen ; 41(1): 29, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34593046

ABSTRACT

Autophagy is a highly conserved mechanism of delivering cytoplasmic components for lysosomal degradation. Among the three major autophagic pathways, chaperone-mediated autophagy (CMA) is primarily characterized by its selective nature of protein degradation, which is mediated by heat shock cognate 71 kDa protein (HSC70: also known as HSPA8) recognition of the KFERQ peptide motif in target proteins. Lysosome-associated membrane protein type 2A (LAMP2A) is responsible for substrate binding and internalization to lysosomes, and thus, the lysosomal expression level of LAMP2A is a rate-limiting factor for CMA. Recent advances have uncovered not only physiological but also pathological role of CMA in multiple organs, including neurodegenerative disorders, kidney diseases, liver diseases, heart diseases, and cancers through the accumulation of unwanted proteins or increased degradation of target proteins with concomitant metabolic alterations resulting from CMA malfunction. With respect to pulmonary disorders, the involvement of CMA has been demonstrated in lung cancer and chronic obstructive pulmonary disease (COPD) pathogenesis through regulating apoptosis. Further understanding of CMA machinery may shed light on the molecular mechanisms of refractory disorders and lead to novel treatment modalities through CMA modulation.

6.
J Extracell Vesicles ; 10(8): e12092, 2021 06.
Article in English | MEDLINE | ID: mdl-34122778

ABSTRACT

The clinical manifestations of COVID-19 vary broadly, ranging from asymptomatic infection to acute respiratory failure and death. But the predictive biomarkers for characterizing the variability are still lacking. Since emerging evidence indicates that extracellular vesicles (EVs) and extracellular RNAs (exRNAs) are functionally involved in a number of pathological processes, we hypothesize that these extracellular components may be key determinants and/or predictors of COVID-19 severity. To test our hypothesis, we collected serum samples from 31 patients with mild COVID-19 symptoms at the time of their admission for discovery cohort. After symptomatic treatment without corticosteroids, 9 of the 31 patients developed severe/critical COVID-19 symptoms. We analyzed EV protein and exRNA profiles to look for correlations between these profiles and COVID-19 severity. Strikingly, we identified three distinct groups of markers (antiviral response-related EV proteins, coagulation-related markers, and liver damage-related exRNAs) with the potential to serve as early predictive biomarkers for COVID-19 severity. As the best predictive marker, EV COPB2 protein, a subunit of the Golgi coatomer complex, exhibited significantly higher abundance in patients remained mild than developed severe/critical COVID-19 and healthy controls in discovery cohort (AUC 1.00 (95% CI: 1.00-1.00)). The validation set included 40 COVID-19 patients and 39 healthy controls, and showed exactly the same trend between the three groups with excellent predictive value (AUC 0.85 (95% CI: 0.73-0.97)). These findings highlight the potential of EV COPB2 expression for patient stratification and for making early clinical decisions about strategies for COVID-19 therapy.


Subject(s)
COVID-19/blood , COVID-19/physiopathology , Cell-Free Nucleic Acids/blood , Coatomer Protein/blood , Extracellular Vesicles/chemistry , Biomarkers/blood , COVID-19/immunology , Humans , Retrospective Studies , SARS-CoV-2/physiology , Severity of Illness Index
7.
J Immunol ; 207(1): 65-76, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34135057

ABSTRACT

Insufficient autophagic degradation has been implicated in accelerated cellular senescence during chronic obstructive pulmonary disease (COPD) pathogenesis. Aging-linked and cigarette smoke (CS)-induced functional deterioration of lysosomes may be associated with impaired autophagy. Lysosomal membrane permeabilization (LMP) is indicative of damaged lysosomes. Galectin-3 and tripartite motif protein (TRIM) 16 play a cooperative role in recognizing LMP and inducing lysophagy, a lysosome-selective autophagy, to maintain lysosome function. In this study, we sought to examine the role of TRIM16-mediated lysophagy in regulating CS-induced LMP and cellular senescence during COPD pathogenesis by using human bronchial epithelial cells and lung tissues. CS extract (CSE) induced lysosomal damage via LMP, as detected by galectin-3 accumulation. Autophagy was responsible for modulating LMP and lysosome function during CSE exposure. TRIM16 was involved in CSE-induced lysophagy, with impaired lysophagy associated with lysosomal dysfunction and accelerated cellular senescence. Airway epithelial cells in COPD lungs showed an increase in lipofuscin, aggresome and galectin-3 puncta, reflecting accumulation of lysosomal damage with concomitantly reduced TRIM16 expression levels. Human bronchial epithelial cells isolated from COPD patients showed reduced TRIM16 but increased galectin-3, and a negative correlation between TRIM16 and galectin-3 protein levels was demonstrated. Damaged lysosomes with LMP are accumulated in epithelial cells in COPD lungs, which can be at least partly attributed to impaired TRIM16-mediated lysophagy. Increased LMP in lung epithelial cells may be responsible for COPD pathogenesis through the enhancement of cellular senescence.


Subject(s)
Lysosomes/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Tripartite Motif Proteins/immunology , Ubiquitin-Protein Ligases/immunology , Cells, Cultured , Humans , Hydrogen-Ion Concentration , Pulmonary Disease, Chronic Obstructive/pathology
8.
Cancer Sci ; 111(11): 4154-4165, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32860290

ABSTRACT

Chaperone-mediated autophagy (CMA) is a lysosomal degradation pathway of selective soluble proteins. Lysosome-associated membrane protein type 2a (LAMP2A) is the key receptor protein of CMA; downregulation of LAMP2A leads to CMA blockade. Although CMA activation has been involved in cancer growth, CMA status and functions in non-small cell lung cancer (NSCLC) by focusing on the roles in regulating chemosensitivity remain to be clarified. In this study, we found that LAMP2A expression is elevated in NSCLC cell lines and patient's tumors, conferring poor survival and platinum resistance in NSCLC patients. LAMP2A knockdown in NSCLC cells suppressed cell proliferation and colony formation and increased the sensitivity to chemotherapeutic drugs in vitro. Furthermore, we found that intrinsic apoptosis signaling is the mechanism of cell death involved with CMA blockade. Remarkably, LAMP2A knockdown repressed tumorigenicity and sensitized the tumors to cisplatin treatment in NSCLC-bearing mice. Our discoveries suggest that LAMP2A is involved in the regulation of cancer malignant phenotypes and represents a promising new target against chemoresistant NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm , Lung Neoplasms/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomes/metabolism , Signal Transduction , Animals , Apoptosis/genetics , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression , Gene Knockdown Techniques , Humans , Immunohistochemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lysosomal-Associated Membrane Protein 2/genetics , Prognosis , Proteolysis
9.
J Immunol ; 205(5): 1256-1267, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32699159

ABSTRACT

Cigarette smoke (CS) induces accumulation of misfolded proteins with concomitantly enhanced unfolded protein response (UPR). Increased apoptosis linked to UPR has been demonstrated in chronic obstructive pulmonary disease (COPD) pathogenesis. Chaperone-mediated autophagy (CMA) is a type of selective autophagy for lysosomal degradation of proteins with the KFERQ peptide motif. CMA has been implicated in not only maintaining nutritional homeostasis but also adapting the cell to stressed conditions. Although recent papers have shown functional cross-talk between UPR and CMA, mechanistic implications for CMA in COPD pathogenesis, especially in association with CS-evoked UPR, remain obscure. In this study, we sought to examine the role of CMA in regulating CS-induced apoptosis linked to UPR during COPD pathogenesis using human bronchial epithelial cells (HBEC) and lung tissues. CS extract (CSE) induced LAMP2A expression and CMA activation through a Nrf2-dependent manner in HBEC. LAMP2A knockdown and the subsequent CMA inhibition enhanced UPR, including CHOP expression, and was accompanied by increased apoptosis during CSE exposure, which was reversed by LAMP2A overexpression. Immunohistochemistry showed that Nrf2 and LAMP2A levels were reduced in small airway epithelial cells in COPD compared with non-COPD lungs. Both Nrf2 and LAMP2A levels were significantly reduced in HBEC isolated from COPD, whereas LAMP2A levels in HBEC were positively correlated with pulmonary function tests. These findings suggest the existence of functional cross-talk between CMA and UPR during CSE exposure and also that impaired CMA may be causally associated with COPD pathogenesis through enhanced UPR-mediated apoptosis in epithelial cells.


Subject(s)
Apoptosis/physiology , Chaperone-Mediated Autophagy/physiology , Pulmonary Disease, Chronic Obstructive/pathology , Unfolded Protein Response/physiology , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Lung/metabolism , Lung/pathology , Lysosomes/metabolism , Lysosomes/pathology , NF-E2-Related Factor 2/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Smoke/adverse effects , Nicotiana/adverse effects
10.
J Immunol ; 203(8): 2076-2087, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31534007

ABSTRACT

The imbalanced redox status in lung has been widely implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis. To regulate redox status, hydrogen peroxide must be adequately reduced to water by glutathione peroxidases (GPx). Among GPx isoforms, GPx4 is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide. Increased lipid peroxidation products have been demonstrated in IPF lungs, suggesting the participation of imbalanced lipid peroxidation in IPF pathogenesis, which can be modulated by GPx4. In this study, we sought to examine the involvement of GPx4-modulated lipid peroxidation in regulating TGF-ß-induced myofibroblast differentiation. Bleomycin-induced lung fibrosis development in mouse models with genetic manipulation of GPx4 were examined. Immunohistochemical evaluations for GPx4 and lipid peroxidation were performed in IPF lung tissues. Immunohistochemical evaluations showed reduced GPx4 expression levels accompanied by increased 4-hydroxy-2-nonenal in fibroblastic focus in IPF lungs. TGF-ß-induced myofibroblast differentiation was enhanced by GPx4 knockdown with concomitantly enhanced lipid peroxidation and SMAD2/SMAD3 signaling. Heterozygous GPx4-deficient mice showed enhancement of bleomycin-induced lung fibrosis, which was attenuated in GPx4-transgenic mice in association with lipid peroxidation and SMAD signaling. Regulating lipid peroxidation by Trolox showed efficient attenuation of bleomycin-induced lung fibrosis development. These findings suggest that increased lipid peroxidation resulting from reduced GPx4 expression levels may be causally associated with lung fibrosis development through enhanced TGF-ß signaling linked to myofibroblast accumulation of fibroblastic focus formation during IPF pathogenesis. It is likely that regulating lipid peroxidation caused by reduced GPx4 can be a promising target for an antifibrotic modality of treatment for IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Animals , Bleomycin , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Lipid Peroxidation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myofibroblasts/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/deficiency , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Transforming Growth Factor beta/metabolism
11.
Nat Commun ; 10(1): 3145, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31316058

ABSTRACT

Ferroptosis is a necrotic form of regulated cell death (RCD) mediated by phospholipid peroxidation in association with free iron-mediated Fenton reactions. Disrupted iron homeostasis resulting in excessive oxidative stress has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, we demonstrate the involvement of ferroptosis in COPD pathogenesis. Our in vivo and in vitro models show labile iron accumulation and enhanced lipid peroxidation with concomitant non-apoptotic cell death during cigarette smoke (CS) exposure, which are negatively regulated by GPx4 activity. Treatment with deferoxamine and ferrostatin-1, in addition to GPx4 knockdown, illuminate the role of ferroptosis in CS-treated lung epithelial cells. NCOA4-mediated ferritin selective autophagy (ferritinophagy) is initiated during ferritin degradation in response to CS treatment. CS exposure models, using both GPx4-deficient and overexpressing mice, clarify the pivotal role of GPx4-regulated cell death during COPD. These findings support a role for cigarette smoke-induced ferroptosis in the pathogenesis of COPD.


Subject(s)
Ferroptosis , Pulmonary Disease, Chronic Obstructive/pathology , Smoking , Animals , Epithelial Cells/pathology , Humans , Iron/metabolism , Lipid Peroxidation , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Receptor Coactivators/genetics , Phospholipids/metabolism , Reactive Oxygen Species/metabolism
12.
J Immunol ; 202(5): 1428-1440, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30692212

ABSTRACT

Downregulation of lamin B1 has been recognized as a crucial step for development of full senescence. Accelerated cellular senescence linked to mechanistic target of rapamycin kinase (MTOR) signaling and accumulation of mitochondrial damage has been implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. We hypothesized that lamin B1 protein levels are reduced in COPD lungs, contributing to the process of cigarette smoke (CS)-induced cellular senescence via dysregulation of MTOR and mitochondrial integrity. To illuminate the role of lamin B1 in COPD pathogenesis, lamin B1 protein levels, MTOR activation, mitochondrial mass, and cellular senescence were evaluated in CS extract (CSE)-treated human bronchial epithelial cells (HBEC), CS-exposed mice, and COPD lungs. We showed that lamin B1 was reduced by exposure to CSE and that autophagy was responsible for lamin B1 degradation in HBEC. Lamin B1 reduction was linked to MTOR activation through DEP domain-containing MTOR-interacting protein (DEPTOR) downregulation, resulting in accelerated cellular senescence. Aberrant MTOR activation was associated with increased mitochondrial mass, which can be attributed to peroxisome proliferator-activated receptor γ coactivator-1ß-mediated mitochondrial biogenesis. CS-exposed mouse lungs and COPD lungs also showed reduced lamin B1 and DEPTOR protein levels, along with MTOR activation accompanied by increased mitochondrial mass and cellular senescence. Antidiabetic metformin prevented CSE-induced HBEC senescence and mitochondrial accumulation via increased DEPTOR expression. These findings suggest that lamin B1 reduction is not only a hallmark of lung aging but is also involved in the progression of cellular senescence during COPD pathogenesis through aberrant MTOR signaling.


Subject(s)
Cellular Senescence/immunology , Lamin Type B/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Cellular Senescence/genetics , Humans , Lamin Type B/genetics , Oxidation-Reduction , Pulmonary Disease, Chronic Obstructive/pathology , Tumor Cells, Cultured
13.
Autophagy ; 15(3): 510-526, 2019 03.
Article in English | MEDLINE | ID: mdl-30290714

ABSTRACT

Cigarette smoke (CS)-induced accumulation of mitochondrial damage has been widely implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Mitophagy plays a crucial role in eliminating damaged mitochondria, and is governed by the PINK1 (PTEN induced putative protein kinase 1)-PRKN (parkin RBR E3 ubiquitin protein ligase) pathway. Although both increased PINK1 and reduced PRKN have been implicated in COPD pathogenesis in association with mitophagy, there are conflicting reports for the role of mitophagy in COPD progression. To clarify the involvement of PRKN-regulated mitophagy in COPD pathogenesis, prkn knockout (KO) mouse models were used. To illuminate how PINK1 and PRKN regulate mitophagy in relation to CS-induced mitochondrial damage and cellular senescence, overexpression and knockdown experiments were performed in airway epithelial cells (AEC). In comparison to wild-type mice, prkn KO mice demonstrated enhanced airway wall thickening with emphysematous changes following CS exposure. AEC in CS-exposed prkn KO mice showed accumulation of damaged mitochondria and increased oxidative modifications accompanied by accelerated cellular senescence. In vitro experiments showed PRKN overexpression was sufficient to induce mitophagy during CSE exposure even in the setting of reduced PINK1 protein levels, resulting in attenuation of mitochondrial ROS production and cellular senescence. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, indicating that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy during CSE exposure. These results suggest that PRKN levels may play a pivotal role in COPD pathogenesis by regulating mitophagy, suggesting that PRKN induction could mitigate the progression of COPD. Abbreviations: AD: Alzheimer disease; AEC: airway epithelial cells; BALF: bronchoalveolar lavage fluid; AKT: AKT serine/threonine kinase; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; COPD: chronic obstructive pulmonary disease; CS: cigarette smoke; CSE: CS extract; CXCL1: C-X-C motif chemokine ligand 1; CXCL8: C-X-C motif chemokine ligand 8; HBEC: human bronchial epithelial cells; 4-HNE: 4-hydroxynonenal; IL: interleukin; KO: knockout; LF: lung fibroblasts; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; 8-OHdG: 8-hydroxy-2'-deoxyguanosine; OPTN: optineurin; PRKN: parkin RBR E3 ubiquitin protein ligase; PCD: programmed cell death; PFD: pirfenidone; PIK3C: phosphatidylinositol-4:5-bisphosphate 3-kinase catalytic subunit; PINK1: PTEN induced putative kinase 1; PTEN: phosphatase and tensin homolog; RA: rheumatoid arthritis; ROS: reactive oxygen species; SA-GLB1/ß-Gal: senescence-associated-galactosidase, beta 1; SASP: senescence-associated secretory phenotype; SNP: single nucleotide polymorphism; TNF: tumor necrosis factor.


Subject(s)
Cellular Senescence , Mitochondria/metabolism , Mitophagy , Pulmonary Disease, Chronic Obstructive/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Cellular Senescence/drug effects , Cellular Senescence/genetics , Cigarette Smoking/adverse effects , Disease Models, Animal , Epithelial Cells/metabolism , Humans , Lung/pathology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron , Mitochondria/genetics , Mitochondria/pathology , Mitochondria/ultrastructure , Mitophagy/drug effects , Mitophagy/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Pyridones/pharmacology , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/genetics
14.
Respirol Case Rep ; 6(2): e00285, 2018 02.
Article in English | MEDLINE | ID: mdl-29321929

ABSTRACT

We herein present a case of a 71-year-old woman with primary Sjogren's syndrome (SjS), who developed bilateral pleural effusion and ground glass opacity during treatment with low-dose prednisolone. The pleural effusion and bronchoalveolar lavage fluid revealed elevation of lymphocytes. Thoracoscopic pleural biopsy showed infiltration of lymphocytes with no evidence of other diseases, confirming SjS-related pleuritis. Therefore, we initiated 20 mg prednisolone and pleural effusion was rapidly resolved. Our results indicate that SjS can be rarely complicated with pleuritis. In addition, thoracoscopic pleural biopsy and a rapid response to steroid treatment would be helpful for diagnosing SjS-related pleuritis.

SELECTION OF CITATIONS
SEARCH DETAIL
...