Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 5(1): e8590, 2010 Jan 06.
Article in English | MEDLINE | ID: mdl-20066037

ABSTRACT

The bacterial divisome is a multiprotein complex. Specific protein-protein interactions specify whether cell division occurs optimally, or whether division is arrested. Little is known about these protein-protein interactions and their regulation in mycobacteria. We have investigated the interrelationship between the products of the Mycobacterium tuberculosis gene cluster Rv0014c-Rv0019c, namely PknA (encoded by Rv0014c) and FtsZ-interacting protein A, FipA (encoded by Rv0019c) and the products of the division cell wall (dcw) cluster, namely FtsZ and FtsQ. M. smegmatis strains depleted in components of the two gene clusters have been complemented with orthologs of the respective genes of M. tuberculosis. Here we identify FipA as an interacting partner of FtsZ and FtsQ and establish that PknA-dependent phosphorylation of FipA on T77 and FtsZ on T343 is required for cell division under oxidative stress. A fipA knockout strain of M. smegmatis is less capable of withstanding oxidative stress than the wild type and showed elongation of cells due to a defect in septum formation. Localization of FtsQ, FtsZ and FipA at mid-cell was also compromised. Growth and survival defects under oxidative stress could be functionally complemented by fipA of M. tuberculosis but not its T77A mutant. Merodiploid strains of M. smegmatis expressing the FtsZ(T343A) showed inhibition of FtsZ-FipA interaction and Z ring formation under oxidative stress. Knockdown of FipA led to elongation of M. tuberculosis cells grown in macrophages and reduced intramacrophage growth. These data reveal a novel role of phosphorylation-dependent protein-protein interactions involving FipA, in the sustenance of mycobacterial cell division under oxidative stress.


Subject(s)
Bacterial Proteins/metabolism , Cell Division , Cytoskeletal Proteins/metabolism , Mycobacterium/cytology , Mycobacterium/metabolism , Oxidative Stress , Phosphorylation , Protein Binding , Subcellular Fractions/metabolism
2.
Mol Microbiol ; 73(1): 103-19, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19496931

ABSTRACT

Wag31 of Mycobacterium tuberculosis belongs to the DivIVA family of proteins known to regulate cell morphology in Gram-positive bacteria. Here we demonstrate an unrecognized, novel role of Wag31 in oxidatively stressed mycobacteria. We report the cleavage of penicillin-binding protein 3 (PBP3) by the intramembrane metalloprotease Rv2869c (MSMEG_2579) in oxidatively stressed cells. Amino acids (102)A and (103)A of PBP3 are required for Rv2869c-mediated cleavage. Wag31(MTB), by virtue of its interaction with PBP3 through amino acid residues (46)NSD(48), protects it from oxidative stress-induced cleavage. PBP3 undergoes cleavage in Mycobacterium smegmatis (strain PM2) harbouring wag31(Delta(46)NSD(48)) instead of the wild type, with concomitant reduction in ability to withstand oxidative stress. Overexpression of Wag31(Delta(46)NSD(48)) attenuates the survival of M. tuberculosis in macrophages with concomitant cleavage of PBP3, and renders the organism more susceptible towards hydrogen peroxide as well as drugs which generate reactive oxygen species, namely isoniazid and ofloxacin. We propose that targeting Wag31 could enhance the activity of mycobactericidal drugs which are known to generate reactive oxygen species.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium tuberculosis/genetics , Oxidative Stress , Bacterial Proteins/genetics , Cell Line , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Humans , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/metabolism , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...