Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 409
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124944, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39128308

ABSTRACT

As a type of reactive oxygen species, hypochlorous acid (ClO-) plays an important role in sterilization, disinfection and protection in organisms. However, excessive production of ClO- is closely related to various diseases. In this work, we have designed a robust ratiometric fluorescent probe, RDB-ClO, using the excited-state intramolecular proton transfer (ESIPT) strategy. RDB-ClO was achieved by modifying 2-(2-(benzo[d]thiazol-2-yl)-6-(diethylamino)-3-oxo-3H-xanthen-9-yl) benzoic acid (RDB-OH) with a 1-naphthoyl chloride group, specifically for the sensitive detection of ClO-. In the presence of ClO-, RDB-ClO demonstrated relatively good performance, showing swift response time (35 s), low detection limit of 5.1 nM and high selectivity towards ClO-. Notably, the convenience and accessibility detection of ClO- has been implemented using test strip and agarose probe. RDB-ClO effectively tracked both endogenous and exogenous ClO- in HeLa cells, HepG2 cells and zebrafish. Additionally, it is successfully applied to detect changes of exogenous ClO- content in E. coli. and acetaminophen (APAP)-induced liver injury in mice. The development of RDB-ClO represents a promising molecular tool for studying the pathogenesis of DILI and biotransformation of ClO- in bacteria.

2.
J Nanobiotechnology ; 22(1): 460, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090717

ABSTRACT

BACKGROUND: Nanoplastics (NPs) are emerging pollutants that pose risks to living organisms. Recent findings have unveiled the reproductive harm caused by polystyrene nanoparticles (PS-NPs) in female animals, yet the intricate mechanism remains incompletely understood. Under this research, we investigated whether sustained exposure to PS-NPs at certain concentrations in vivo can enter oocytes through the zona pellucida or through other routes that affect female reproduction. RESULTS: We show that PS-NPs disrupted ovarian functions and decreased oocyte quality, which may be a contributing factor to lower female fertility in mice. RNA sequencing of mouse ovaries illustrated that the PI3K-AKT signaling pathway emerged as the predominant environmental information processing pathway responding to PS-NPs. Western blotting results of ovaries in vivo and cells in vitro showed that PS-NPs deactivated PI3K-AKT signaling pathway by down-regulating the expression of PI3K and reducing AKT phosphorylation at the protein level, PI3K-AKT signaling pathway which was accompanied by the activation of autophagy and apoptosis and the disruption of steroidogenesis in granulosa cells. Since PS-NPs penetrate granulosa cells but not oocytes, we examined whether PS-NPs indirectly affect oocyte quality through granulosa cells using a granulosa cell-oocyte coculture system. Preincubation of granulosa cells with PS-NPs causes granulosa cell dysfunction, resulting in a decrease in the quality of the cocultured oocytes that can be reversed by the addition of 17ß-estradiol. CONCLUSIONS: This study provides findings on how PS-NPs impact ovarian function and include transcriptome sequencing analysis of ovarian tissue. The study demonstrates that PS-NPs impair oocyte quality by altering the functioning of ovarian granulosa cells. Therefore, it is necessary to focus on the research on the effects of PS-NPs on female reproduction and the related methods that may mitigate their toxicity.


Subject(s)
Granulosa Cells , Nanoparticles , Oocytes , Polystyrenes , Signal Transduction , Animals , Female , Mice , Apoptosis/drug effects , Autophagy/drug effects , Fertility/drug effects , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Nanoparticles/toxicity , Oocytes/drug effects , Oocytes/metabolism , Ovary/drug effects , Ovary/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Polystyrenes/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
3.
Curr Med Chem ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39143875

ABSTRACT

INTRODUCTION: Developing effective methods to enhance tumor radiosensitivity is crucial for improving the therapeutic efficacy of radiotherapy (RT). Due to its deep tissue penetration, excellent safety profile, and precise controllability, sonosensitizer- based sonodynamic therapy (SDT) has recently garnered significant attention as a promising combined approach with RT. METHOD: However, the limited reactive oxygen species (ROS) generation ability in the aggregated state and the absence of specific organelle targeting in sonosensitizers hinder their potential to augment RT. This study introduces a fundamental principle guiding the design of high-performance sonosensitizers employed in the aggregated state. Building upon these principles, we develop a mitochondria-targeted sonosensitizer molecule (TCSVP) with aggregation-induced emission (AIE) characteristics by organic synthesis. Then, we demonstrate the abilities of TCSVP to target mitochondria and produce ROS under ultrasound in H460 cancer cells using confocal laser scanning microscopy (CLSM) and fluorescence microscopy. Subsequently, we examine the effectiveness of enhancing tumor radiosensitivity by utilizing TCSVP and ultrasound in both H460 cells and H460 and 4T1 tumor-bearing mice. RESULTS: The results indicate that evoking non-lethal mitochondrial oxidative stress in tumors by TCSVP under ultrasound stimulation can significantly improve tumor radiosensitivity (p <0.05). Additionally, the in vivo safety profile of TCSVP is thoroughly confirmed by histopathological analysis. CONCLUSION: This work proposes strategies for designing efficient sonosensitizers and underscores that evoking non-lethal mitochondrial oxidative stress is an effective method to enhance tumor radiosensitivity.

4.
Heliyon ; 10(12): e32961, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988585

ABSTRACT

The abusive supervision of sports teams under the characteristics of Chinese parental leadership have an adverse effect on the cognition and behavior of athletes, and promote the development and continuation of the internal mechanisms of Chinese sports teams. Based on previous literature on sports team management, this review summarizes and deduces the antecedent variables of abusive supervision in sports teams from three main dimensions: Coaches, Sports team and Athletes. At the same time, the formation mechanism of abusive supervision under parental leadership in China is analyzed. The antecedent variables include: Extreme personality, Family disagreements, Poor mental state, Sports team conflict, Ineffective leadership, Laggard management theory, Weak training atmosphere, Bad training conditions, Negative competition pressure, Extreme character, Negative training attitude and Poor performance in the match. The research conclusions are as follows: Firstly, authoritarian coaches are prone to abusive supervision due to the individual characteristics of coaches, and the abuse behavior will lead to different feedback performances of athletes, resulting in the atmosphere deviation of sports teams. Secondly, moral leadership coaches rely on virtue to engage in abusive behavior and need to avoid negative cycles within the team that affect overall performance. Thirdly, the performance behavior of benevolent leadership coaches can avoid or counteract abusive supervision, but is prone to ineffective performance. Therefore, the review believes that, in the management of Chinese sports teams, Contingency Theory should be combined to adopt different leadership behaviors based on people, time, and place, in order to achieve the best results and optimal management.

5.
Cell Death Dis ; 15(7): 551, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085197

ABSTRACT

PLK1 is currently at the forefront of mitotic research and has emerged as a potential target for small cell lung cancer (SCLC) therapy. However, the factors influencing the efficacy of PLK1 inhibitors remain unclear. Herein, BRCA1 was identified as a key factor affecting the response of SCLC cells to BI-2536. Targeting AURKA with alisertib, at a non-toxic concentration, reduced the BI-2536-induced accumulation of BRCA1 and RAD51, leading to DNA repair defects and mitotic cell death in SCLC cells. In vivo experiments confirmed that combining BI-2536 with alisertib impaired DNA repair capacity and significantly delayed tumor growth. Additionally, GSEA analysis and loss- and gain-of-function assays demonstrated that MYC/MYCN signaling is crucial for determining the sensitivity of SCLC cells to BI-2536 and its combination with alisertib. The study further revealed a positive correlation between RAD51 expression and PLK1/AURKA expression, and a negative correlation with the IC50 values of BI-2536. Manipulating RAD51 expression significantly influenced the efficacy of BI-2536 and restored the MYC/MYCN-induced enhancement of BI-2536 sensitivity in SCLC cells. Our findings indicate that the BRCA1 and MYC/MYCN-RAD51 axes govern the response of small cell lung cancer to BI-2536 and its combination with alisertib. This study propose the combined use of BI-2536 and alisertib as a novel therapeutic strategy for the treatment of SCLC patients with MYC/MYCN activation.


Subject(s)
Azepines , BRCA1 Protein , Lung Neoplasms , Proto-Oncogene Proteins c-myc , Pyrimidines , Small Cell Lung Carcinoma , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Animals , Cell Line, Tumor , Azepines/pharmacology , Aurora Kinase A/metabolism , Aurora Kinase A/antagonists & inhibitors , Rad51 Recombinase/metabolism , Mice , Mice, Nude , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Polo-Like Kinase 1 , DNA Repair/drug effects , Female , Xenograft Model Antitumor Assays , Pteridines
6.
Pathol Res Pract ; 260: 155372, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878664

ABSTRACT

OBJECTIVE: To explore the clinical, imaging, pathologic characteristics and differential diagnosis of solitary pulmonary capillary hemangioma (SPCH). METHODS: Thirty two cases of SPCH were collected and studied, with literature review. RESULTS: This study included 13 males and 19 females, with a male-to-female ratio of 1:1.5. The age ranged from 26 to 70 years (median age of 43 years). All patients were asymptomatic at presentation. Lung nodules were incidentally discovered during chest computed tomography (CT). Imaging features included 21 cases with partial solid nodules (PSN), 7 cases with ground-glass nodules (GGN), and 4 cases with solid nodules (SN). Eleven cases were in the left lung lower basal segment, 11 cases in the right lung lower basal segment, 6 cases in the right lung upper anterior segment, and 4 cases in the right lung middle lateral segment. The lower basal segments of the lungs were involved in 22 (11 in each lung) cases (22/32, 68 %). The tumors ranged from 6 to 18 mm (average 10 mm). Macroscopically, 16 cases had clear boundaries, while 16 cases had unclear boundaries, and gray-red or dark brown on cut surfaces. Intraoperative frozen section was performed in 27 cases, with diagnosis of SPCH in 12 and pneumonia or inflammatory lesion in 15. Microscopically, the nodules were composed of densely proliferated and dilated capillaries. The capillary walls were lined with a single layer of flat endothelial cells, without atypical features. Collapsed alveolar septa were replaced by a large number of capillaries. All cases showed proliferating capillaries spreading into the walls of small veins/arteries and bronchi, with 3 cases showing dilated capillaries protruding into the bronchiolar lumens as polyp-like structures. Twenty-six cases (26/32, 81 %) showed proliferating capillaries passed over the interlobular septa. Twenty-six cases (26/32, 81 %) showed irregular intimal thickening of small muscular arteries in the peripheral areas of the lesions, with the thickened intima being cellular or fibrous. In twenty-seven cases (27/32, 84 %) the lesions were located in the subpleura, with 6 cases involving the pleura. CONCLUSION: SPCH is a rare benign lung tumor that mostly occurs in the lung lower basal segments with predominance in females. It usually appears as a ground-glass nodule on CT and is very similar to early-stage lung cancer. Accurate diagnosis requires collaboration of radiologists, surgeons, and pathologists. SPCH should be regarded as an important differential diagnosis of small incidental lung nodules.


Subject(s)
Hemangioma, Capillary , Lung Neoplasms , Humans , Middle Aged , Male , Female , Hemangioma, Capillary/pathology , Hemangioma, Capillary/diagnostic imaging , Adult , Aged , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Diagnosis, Differential , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Tomography, X-Ray Computed
7.
Eur Radiol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834788

ABSTRACT

OBJECTIVES: To investigate the potential utility of [18F]fibroblast activation protein inhibitor (FAPI) positron emission tomography/computed tomography (PET/CT) for evaluating pulmonary artery (PA) masses, and compare it with [18F]fluorodeoxyglucose (FDG) PET/CT. METHODS: Participants with clinically suspected PA malignancy were prospectively enrolled and underwent dual-tracer PET/CT ([18F]FAPI-42 and [18F]FDG) imaging. Visual analysis and semi-quantitative parameters were compared between the two types of radiotracers. The tissue specimen underwent immunohistochemical staining to verify FAP expression in the tissue. RESULTS: Thirty-three patients (18 males/15 females; mean age 53.1 ± 15.4 years) were enrolled. All 21 patients with malignant PA masses were FDG-positive (100%), whereas 20 out of 21 patients were FAPI-positive (95.2%). All 12 patients with benign PA masses were both negative in FDG and FAPI PET. The mean maximum standardized uptake value (SUVmax) and target-to-background ratio (TBR) of FAPI and FDG in malignant PA masses were significantly higher than those of benign masses. Although there was no significant difference in SUVmax between FDG and FAPI in malignant PA masses (11.36 vs. 9.18, p = 0.175), the TBR (liver) and TBR (left ventricle) were more favorable for FAPI than for FDG (13.04 vs. 5.17, p < 0.001); (median: 7.75 vs. 2.75, p = 0.007). Immunohistochemical analysis (n = 16) validated that the level of FAP expression corresponded strongly to the uptake of FAPI in PET/CT scans (rs = 0.712, p = 0.002). For clinical management, FAPI PET found more metastatic lesions than FDG PET in 4 patients, with 2 patients upgrading and 1 patient changing treatment decisions. CONCLUSIONS: FAPI PET/CT is feasible in the diagnosis of PA masses. Although not superior to FDG PET/CT, FAPI PET/CT showed better target-to-background contrast. CLINICAL RELEVANCE STATEMENT: This study found that FAPI PET/CT is not superior to FDG PET/CT in diagnosing PA masses, but FAPI PET/CT displays better target-to-background contrast and more positive lesions, which may help improve disease management. KEY POINTS: Pulmonary malignancies lack specificity in clinical manifestations, laboratory tests, and routine imaging examinations. FAPI PET/CT is not diagnostically better than FDG PET/CT but displays better target-to-background contrast and more positive lesions. Dual-tracer PET/CT ([18F]FAPI-42 and [18F]FDG) imaging improves clinical management of pulmonary artery masses.

8.
Commun Chem ; 7(1): 133, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862828

ABSTRACT

Molecular representation is critical in chemical machine learning. It governs the complexity of model development and the fulfillment of training data to avoid either over- or under-fitting. As electronic structures and associated attributes are the root cause for molecular interactions and their manifested properties, we have sought to examine the local electron information on a molecular manifold to understand and predict molecular interactions. Our efforts led to the development of a lower-dimensional representation of a molecular manifold, Manifold Embedding of Molecular Surface (MEMS), to embody surface electronic quantities. By treating a molecular surface as a manifold and computing its embeddings, the embedded electronic attributes retain the chemical intuition of molecular interactions. MEMS can be further featurized as input for chemical learning. Our solubility prediction with MEMS demonstrated the feasibility of both shallow and deep learning by neural networks, suggesting that MEMS is expressive and robust against dimensionality reduction.

9.
Cancer Imaging ; 24(1): 68, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831354

ABSTRACT

BACKGROUND: This study investigates the value of fluorine 18 ([18F])-labeled fibroblast activation protein inhibitor (FAPI) for lymph node (LN) metastases in patients with stage I-IIIA non-small cell lung cancer (NSCLC). METHODS: From November 2021 to October 2022, 53 patients with stage I-IIIA NSCLC who underwent radical resection were prospectively included. [18F]-fluorodeoxyglucose (FDG) and [18F]FAPI examinations were performed within one week. LN staging was validated using surgical and pathological findings. [18F]FDG and [18F]FAPI uptake was compared using the Wilcoxon signed-ranks test. Furthermore, the diagnostic value of nodal groups was investigated. RESULTS: In 53 patients (median age, 64 years, range: 31-76 years), the specificity of [18F]FAPI for detecting LN metastasis was significantly higher than that of [18F]FDG (P < 0.001). High LN risk category, greater LN short-axis dimension(≥ 1.0 cm), absence of LN calcification or high-attenuation, and higher LN FDG SUVmax (≥ 10.1) were risk factors for LN metastasis(P < 0.05). The concurrence of these four risk factors accurately predicted LN metastases (Positive Predictive Value [PPV] 100%), whereas the presence of one to three risk factors was unable to accurately discriminate the nature of LNs (PPV 21.7%). Adding [18F]FAPI in this circumstance improved the diagnostic value. LNs with an [18F]FAPI SUVmax<6.2 were diagnosed as benign (Negative Predictive Value 93.8%), and LNs with an [18F]FAPI SUVmax≥6.2 without calcification or high-attenuation were diagnosed as LN metastasis (PPV 87.5%). Ultimately, the integration of [18F]FDG and [18F]FAPI PET/CT resulted in the highest accuracy for N stage (83.0%) and clinical decision revisions for 29 patients. CONCLUSION: In patients with stage I-IIIA NSCLC, [18F]FAPI contributed additional valuable information to reduce LN diagnostic uncertainties after [18F]FDG PET/CT. Integrating [18F]FDG and [18F]FAPI PET/CT resulted in more precise clinical decisions. TRIAL REGISTRATION: The Chinese Clinical Trial Registry: ChiCTR2100044944 (Registered: 1 April 2021, https://www.chictr.org.cn/showprojEN.html?proj=123995 ).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Fluorodeoxyglucose F18 , Lung Neoplasms , Lymphatic Metastasis , Neoplasm Staging , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Middle Aged , Male , Female , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Prospective Studies , Aged , Positron Emission Tomography Computed Tomography/methods , Adult , Lymphatic Metastasis/diagnostic imaging , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124613, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38865887

ABSTRACT

As a crucial endogenous reactive oxygen species, hypochlorous acid (HClO) plays an indispensable role in numerous physiological and pathological processes. Additionally, it serves as a biomarker closely associated with inflammation and liver injury. The utilization of near-infrared fluorescence probes has surged in recent years for live biological imaging, owing to their minimal tissue damage and potent tissue penetration capabilities. In this work, a novel near-infrared fluorescence probe MB-HPD was synthesized to sensitively detect HClO. Probe MB-HPD exhibits remarkable selectivity, high sensitivity (14.3 nM), and rapid response towards HClO (20 s). Probe MB-HPD has demonstrated successful application in the imaging of HClO within cells and zebrafish. Remarkably, it has proven to be effective for detecting HClO within environmental samples, as well as imaging HClO in mice models of arthritis and APAP-induced liver injury. These findings indicate the broad applicability of probe MB-HPD, offering a promising avenue for designing highly selective near-infrared fluorescence probes suitable for real-time HClO monitoring.


Subject(s)
Environmental Monitoring , Fluorescent Dyes , Hypochlorous Acid , Zebrafish , Hypochlorous Acid/analysis , Fluorescent Dyes/chemistry , Animals , Mice , Humans , Environmental Monitoring/methods , Colorimetry/methods , Spectroscopy, Near-Infrared/methods , Optical Imaging/methods
11.
Clin Exp Pharmacol Physiol ; 51(7): e13868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38745265

ABSTRACT

Cervical cancer (CC) is a gynaecological malignancy tumour that seriously threatens women's health. Recent evidence has identified that interferon regulatory factor 5 (IRF5), a nucleoplasm shuttling protein, is a pivotal transcription factor regulating the growth and metastasis of various human tumours. This study aimed to investigate the function and molecular basis of IRF5 in CC development. IRF5, protein phosphatase 6 catalytic subunit (PPP6C) and methyltransferase-like 3 (METTL3) mRNA levels were evaluated by quantitative real-time (qRT)-polymerase chain reaction (PCR). IRF5, PPP6C, METTL3, B-cell lymphoma 2 and Bax protein levels were detected using western blot. Cell proliferation, migration, invasion, angiogenesis and apoptosis were determined by using colony formation, 5-ethynyl-2'-deoxyuridine (EdU), transwell, tube formation assay and flow cytometry assay, respectively. Glucose uptake and lactate production were measured using commercial kits. Xenograft tumour assay in vivo was used to explore the role of IRF5. After JASPAR predication, binding between IRF5 and PPP6C promoter was verified using chromatin immunoprecipitation and dual-luciferase reporter assays. Moreover, the interaction between METTL3 and IRF5 was verified using methylated RNA immunoprecipitation (MeRIP). IRF5, PPP6C and METTL3 were highly expressed in CC tissues and cells. IRF5 silencing significantly inhibited cell proliferation, migration, invasion, angiogenesis and glycolytic metabolism in CC cells, while induced cell apoptosis. Furthermore, the absence of IRF5 hindered tumour growth in vivo. At the molecular level, IRF5 might bind with PPP6C to positively regulate the expression of PPP6C mRNA. Meanwhile, IRF5 was identified as a downstream target of METTL3-mediated m6A modification. METTL3-mediated m6A modification of mRNA might promote CC malignant progression by regulating PPP6C, which might provide a promising therapeutic target for CC treatment.


Subject(s)
Cell Proliferation , Interferon Regulatory Factors , Methyltransferases , Phosphoprotein Phosphatases , Up-Regulation , Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Mice, Nude , Neoplasm Invasiveness , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism
12.
Adv Healthc Mater ; : e2400362, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768110

ABSTRACT

The diminishing effectiveness of existing aminoglycoside antibiotics (AGs) compels scientists to seek new approaches to enhance the sensitivity of current AGs. Despite ongoing efforts, currently available approaches remain restricted. Herein, a novel strategy involving the rational construction of an aggregation-induced-emission luminogen (AIEgen) is introduced to significantly enhance Gram-positive bacteria's susceptibility to AGs. The application of this approach involves the simple addition of AIEgens to bacteria followed by a 5 min light irradiation. Under light exposure, AIEgens efficiently generate reactive oxygen species (ROS), elevating intrabacterial ROS levels to a nonlethal threshold. Post treatment, the bacteria swiftly enter a hypersensitive state, resulting in a 21.9-fold, 15.5-fold, or 7.2-fold increase in susceptibility to three AGs: kanamycin, gentamycin, and neomycin, respectively. Remarkably, this approach is specific to AGs, and the induced hypersensitivity displays unparalleled longevity and heritability. Further in vivo studies confirm a 7.0-fold enhanced bactericidal ability of AGs against Gram-positive bacteria through this novel approach. This research not only broadens the potential applications of AIEgens but also introduces a novel avenue to bolster the effectiveness of AGs in combating bacterial infections.

13.
Cell Mol Life Sci ; 81(1): 238, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795180

ABSTRACT

BRAFV600E represents a constitutively active onco-kinase and stands as the most prevalent genetic alteration in thyroid cancer. However, the clinical efficacy of small-molecule inhibitors targeting BRAFV600E is often limited by acquired resistance. Here, we find that nerve/glial antigen 2 (NG2), also known as chondroitin sulfate proteoglycan 4 (CSPG4), is up-regulated in thyroid cancers, and its expression is increased with tumor progression in a BRAFV600E-driven thyroid cancer mouse model. Functional studies show that NG2 knockout almost does not affect tumor growth, but significantly improves the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4720. Mechanistically, the blockade of ERK-dependent feedback by BRAF inhibitor can activate receptor tyrosine kinase (RTK) signaling, causing the resistance to this inhibitor. NG2 knockout attenuates the PLX4720-mediated feedback activation of several RTKs, improving the sensitivity of BRAF-mutant thyroid cancer cells to this inhibitor. Based on this finding, we propose and demonstrate an alternative strategy for targeting NG2 to effectively treat BRAF-mutant thyroid cancers by combining multiple kinase inhibitor (MKI) Sorafenib or Lenvatinib with PLX4720. Thus, this study uncovers a new mechanism in which NG2 contributes to the resistance of BRAF-mutant thyroid cancer cells to BRAF inhibitor, and provides a promising therapeutic option for BRAF-mutant thyroid cancers.


Subject(s)
Drug Resistance, Neoplasm , Indoles , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Sulfonamides , Thyroid Neoplasms , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Humans , Animals , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Indoles/pharmacology , Mice , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Sulfonamides/pharmacology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Sorafenib/pharmacology , Quinolines/pharmacology , Mutation , Antigens/metabolism , Proteoglycans/metabolism , Membrane Proteins , Chondroitin Sulfate Proteoglycans
14.
J Environ Manage ; 360: 121132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754191

ABSTRACT

In the context of global climate change threatening human survival, and in a post-pandemic era that advocates for a global green and low-carbon economic recovery, conducting an in-depth analysis to assess whether green finance can effectively support low-carbon economic development from a dynamic perspective is crucial. Unlike existing research, which focuses solely on the average effects of green credit (GC) on carbon productivity (CP), we introduce a non-parametric panel data model to investigate GC's impact on CP across 30 provinces in China from 2003 to 2021, verifying a significant time-varying effect. Specifically, during the first phase (2003-2008), GC negatively impacted CP. In the second phase (2009-2014), this negative influence gradually diminished and transformed into a positive effect. In the third phase (2015-2021), GC continued to positively influence CP, although this effect became insignificant during the pandemic. Further subgroup analysis reveals that in the regions with low environmental regulations, GC did not significantly boost CP throughout the sample period. In contrast, in the regions with high environmental regulations, GC's positive effect persisted in the mid to late stages of the sample period. Additionally, compared to the regions with low levels of marketization, the impact of GC on CP was more pronounced in highly marketized regions. This indicates that the promoting effect of GC on CP depends on strong support from environmental regulations and well-functioning market mechanisms. By adopting a non-parametric approach, this study reveals variations in the impact of GC on CP across different stages and under the influence of the pandemic shock, offering new insights into the relationship between GC and China's CP.


Subject(s)
Carbon , Climate Change , China , Carbon/analysis
15.
Plant Physiol ; 195(4): 2652-2667, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38590166

ABSTRACT

Photosynthesis is a major trait of interest for the development of high-yield crop plants. However, little is known about the effects of high-density planting on photosynthetic responses at the whole-canopy level. Using the high-yielding maize (Zea mays L.) cultivars "LY66," "MC670," and "JK968," we conducted a 2-yr field experiment to assess ear development in addition to leaf characteristics and photosynthetic parameters in each canopy layer at 4 planting densities. Increased planting density promoted high grain yield and population-scale biomass accumulation despite reduced per-plant productivity. MC670 had the strongest adaptability to high-density planting conditions. A physiological analysis showed that increased planting density primarily led to decreases in the single-leaf area above the ear for LY66 and MC670 and below the ear for JK968. Furthermore, high planting density decreased chlorophyll content and the photosynthetic rate due to decreased canopy transmission, leading to severe decreases in single-plant biomass accumulation in the lower canopy. Moreover, increased planting density improved presilking biomass transfer, especially in the lower canopy. The yield showed significant positive relationships with photosynthesis and biomass in the lower canopy, demonstrating the important contributions of these leaves to grain yield under dense planting conditions. Increased planting density led to retarded ear development as a consequence of reduced glucose and fructose contents in the ears, indicating reductions in sugar transport that were associated with limited sink organ development, reduced kernel number, and yield loss. Overall, these findings highlighted the photosynthetic capacities of the lower canopy as promising targets for improving maize yield under dense planting conditions.


Subject(s)
Biomass , Photosynthesis , Plant Leaves , Zea mays , Zea mays/growth & development , Zea mays/physiology , Zea mays/metabolism , Photosynthesis/physiology , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/metabolism , Chlorophyll/metabolism , Biological Transport , Agriculture/methods
16.
Endocrine ; 85(3): 1268-1277, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38564084

ABSTRACT

PURPOSE: The role of dual-specificity phosphatase-5 (DUSP5) in BRAF-mutant thyroid cancers remains unclear. The aims of this study are to investigate the role of DUSP5 in BRAF-mutant thyroid cancer cells, explore its value in the diagnosis and evaluate therapeutic potential of targeting DUSP5 combined with sorafenib for BRAF-mutant thyroid cancer patients. METHODS: The role of DUSP5 in thyroid cancer cells was determined by a series of in vitro and in vivo experiments. Underlying mechanisms were explored by western blotting analysis. The diagnostic value of combination detection of DUSP5 expression and BRAFV600E mutation was evaluated using ROC curve. RESULTS: Knocking down DUSP5 in BRAF-mutant thyroid cancer cells significantly inhibited colony formation, cell migration and invasion, meanwhile, induced cell cycle arrest and cell apoptosis. Moreover, inhibition of DUSP5 improved the anti-tumor efficacy of sorafenib both in vitro and in vivo. Besides, combination detection of DUSP5 expression and BRAFV600E mutation showed much more accuracy in preoperative diagnosis of thyroid cancer. CONCLUSIONS: Our data demonstrate an oncogenic role of DUSP5 in BRAF-mutant thyroid cancer cells, and combined analysis of its expression and BRAFV600E mutation can accurately diagnose thyroid cancer. In addition, inhibition of DUSP5 improves the response of BRAF-mutant thyroid cancer cells to sorafenib.


Subject(s)
Antineoplastic Agents , Proto-Oncogene Proteins B-raf , Sorafenib , Thyroid Neoplasms , Sorafenib/pharmacology , Sorafenib/therapeutic use , Humans , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Animals , Mutation , Female , Male , Cell Movement/drug effects , Apoptosis/drug effects , Mice , Middle Aged , Cell Proliferation/drug effects , Phenotype
17.
Neuron ; 112(13): 2177-2196.e6, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38653248

ABSTRACT

White matter injury (WMI) causes oligodendrocyte precursor cell (OPC) differentiation arrest and functional deficits, with no effective therapies to date. Here, we report increased expression of growth hormone (GH) in the hypoxic neonatal mouse brain, a model of WMI. GH treatment during or post hypoxic exposure rescues hypoxia-induced hypomyelination and promotes functional recovery in adolescent mice. Single-cell sequencing reveals that Ghr mRNA expression is highly enriched in vascular cells. Cell-lineage labeling and tracing identify the GHR-expressing vascular cells as a subpopulation of pericytes. These cells display tip-cell-like morphology with kinetic polarized filopodia revealed by two-photon live imaging and seemingly direct blood vessel branching and bridging. Gain-of-function and loss-of-function experiments indicate that GHR signaling in pericytes is sufficient to modulate angiogenesis in neonatal brains, which enhances OPC differentiation and myelination indirectly. These findings demonstrate that targeting GHR and/or downstream effectors may represent a promising therapeutic strategy for WMI.


Subject(s)
Myelin Sheath , Neovascularization, Physiologic , Pericytes , Animals , Pericytes/metabolism , Pericytes/drug effects , Mice , Myelin Sheath/metabolism , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Growth Hormone/metabolism , Growth Hormone/pharmacology , Animals, Newborn , Hypoxia/metabolism , Cell Differentiation/drug effects , Mice, Inbred C57BL , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/drug effects , Receptors, Somatotropin/metabolism , Receptors, Somatotropin/genetics , Angiogenesis
18.
Sci Data ; 11(1): 329, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570477

ABSTRACT

To achieve resource efficiency, and carbon neutrality, it is vital to evaluate nutrient supply and gaseous pollutant emissions associated with field management of bio-straw resources. Previous straw yield estimates have typically relied on a constant grain-to-straw yield ratio without accounting for grain yield levels in a given region. Addressing this high-resolution data gap, our study introduces a novel empirical model for quantifying grain-to-straw yield, which has been used to gauge wheat straw field management practices at the city level during 2011-2015. Utilizing both statistical review and GIS-based methods, average nitrogen (N), phosphorus (P), and potassium (K) supplies from straw field management stood at 1510, 1229, and 61700 tons, respectively. Average emissions of PM2.5, SO2, NOx, NH3, CH4, and CO2 due to straw burning were 367, 41, 160, 18, 165, and 70,644 tons, respectively. We also reported uncertainty from Monte Carlo model as the 5th-95th percentiles of estimated nutrient supply and gaseous pollutant. These insights will provide foundational support for the sustainable and environmentally friendly management of wheat straw in China.


Subject(s)
Air Pollutants , Environmental Pollutants , Agriculture/methods , Air Pollutants/analysis , China , Gases/analysis , Soil , Triticum
19.
Molecules ; 29(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38675718

ABSTRACT

Utilizing solar energy for photocatalytic CO2 reduction is an attractive research field because of its convenience, safety, and practicality. The selection of an appropriate photocatalyst is the key to achieve efficient CO2 reduction. Herein, we report the synthesis of TiO2/CuPc heterojunctions by compositing CuPc with TiO2 microspheres via a hydroxyl-induced self-assembly process. The experimental investigations demonstrated that the optimal TiO2/0.5CuPc photocatalyst exhibited a significantly enhanced CO2 photoreduction rate up to 32.4 µmol·g-1·h-1 under 300 W xenon lamp irradiation, which was 3.7 times that of the TiO2 microspheres alone. The results of photoelectrochemical experiments indicated that the construction of the heterojunctions by introducing CuPc effectively promoted the separation and transport of photogenerated carriers, thus enhancing the catalytic effect of the photocatalyst.

20.
ACS Appl Mater Interfaces ; 16(13): 16164-16174, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38514249

ABSTRACT

Single-metal-site catalysts have recently aroused extensive research in electrochemical energy fields such as zinc-air batteries and water splitting, but their preparation is still a huge challenge, especially in flexible catalyst films. Herein, we propose a sublimation strategy in which metal phthalocyanine molecules with defined isolated metal-N4 sites are gasified by sublimation and then deposited on flexible single-wall carbon nanotube (SWCNT) films by means of π-π coupling interactions. Specifically, iron phthalocyanine anchored on the SWCNT film prepared was directly used to boost the cathodic oxygen reduction reaction of the zinc-air battery, showing a high peak power density of 247 mW cm-2. Nickel phthalocyanine and cobalt phthalocyanine were, respectively, stabilized on SWCNT films as the anodic and cathodic electrocatalysts for water splitting, showing a low potential of 1.655 V at 10 mA cm-2. In situ Raman spectra and theoretical studies demonstrate that highly efficient activities originate from strain-induced metal phthalocyanine on SWCNTs. This work provides a universal preparation method for single-metal-site catalysts and innovative insights for electrocatalytic mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL