Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 40(36): 19146-19154, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39190803

ABSTRACT

Hexagonal boron nitride (h-BN) has attracted significant attention due to its exceptional properties. Among various substrates used for h-BN growth, diamond emerges as a more promising substrate due to its high-temperature resistance and superior electrical properties. To reveal the nucleation mechanism of h-BN on the diamond (111) surface and the impact of hydrogenation treatment on this process, we explored the adsorption, diffusion, nucleation morphologies, and predicted nucleation pathways in this process using first-principles calculations based on density functional theory (DFT). Our results indicate that N positioned above the first layer of C and B positioned above the second layer of C enhance the stability of BN clusters. During the growth of BN clusters, there is a geometric transformation from chain-like structures to honeycomb-like structures. The proportion of unhybridized sp2 atoms within BN clusters and geometric symmetry significantly influence h-BN growth. Moreover, computational findings also suggest that to enhance the nucleation rate of h-BN it is essential to inhibit the formation of zigzag chain structures by BN clusters during the early stages of nucleation on a clean diamond surface. Additionally, hydrogenation treatment decreases the binding affinity of B and N on the substrate, facilitating atomic diffusion, and has been identified as an effective approach to facilitate nucleation. Furthermore, hydrogen-terminated diamond acts as an electron donor in the system, which profoundly affects the morphology of growing h-BN and the characteristics of the h-BN/diamond heterostructures. These conclusions are important to understanding and optimizing h-BN growth on diamond and provide a theoretical basis of the construction and application of the h-BN/diamond heterostructure.

2.
Sci Rep ; 14(1): 9414, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658733

ABSTRACT

The h-BN/diamond mix-dimensional heterostructure has broad application prospects in the fields of optoelectronic devices and power electronic devices. In this paper, the electronic properties and band offsets of hexagonal boron nitride (h-BN)/(H, O, F, OH)-diamond (111) heterostructures were studied by first-principles calculations under biaxial strain. The results show that different terminals could significantly affect the interface binding energy and charge transfer of h-BN/diamond heterostructure. All heterostructures exhibited semiconductor properties. The h-BN/(H, F)-diamond systems were indirect bandgap, while h-BN/(O, OH)-diamond systems were direct bandgap. In addition, the four systems all formed type-II heterostructures, among which h-BN/H-diamond had the largest band offset, indicating that the system was more conducive to the separation of electrons and holes. Under biaxial strain the bandgap values of the h-BN/H-diamond system decreased, and the band type occurred direct-indirect transition. The bandgap of h-BN/(O, F, OH)-diamond system increased linearly in whole range, and the band type only transformed under large strain. On the other hand, biaxial strain could significantly change the band offset of h-BN/diamond heterostructure and promote the application of this heterostructure in different fields. Our work provides theoretical guidance for the regulation of the electrical properties of h-BN/diamond heterostructures by biaxial strain.

3.
Org Biomol Chem ; 14(3): 1024-30, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26633006

ABSTRACT

An organocatalytic dearomative [3 + 2]-annulation of N-alkyl-3-alkylindoles with quinone monoketals is developed. The reaction provides a mild and straightforward way to various benzofuro[2,3-b]indolines of potential biological and pharmaceutical interest in moderate to good yields. Moreover, when 3-phenylindole, a problematic substrate in previous relevant studies, was used as the substrate under the otherwise same reaction conditions, a novel 1,2-shift of the phenyl group occurred followed by aromatization to provide 2,3-diaryl indoles useful for cancer therapy studies in moderate yields.


Subject(s)
Acids/chemistry , Benzoquinones/chemistry , Indoles/chemistry , Indoles/chemical synthesis , Catalysis , Cyclization , Models, Molecular , Molecular Structure
5.
J Immunol ; 184(12): 7047-56, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20483775

ABSTRACT

Type I IFNs exert diverse effector and regulatory functions in host immunity to viral and nonviral infections; however, the role of endogenous type I IFNs in leishmaniasis is unclear. We found that type I IFNR-deficient (IFNAR-/-) mice developed attenuated lesions and reduced Ag-specific immune responses following infection with Leishmania amazonensis parasites. The marked reduction in tissue parasites, even at 3 d in IFNAR-/- mice, seemed to be indicative of an enhanced innate immunity. Further mechanistic analyses indicated distinct roles for neutrophils in parasite clearance; IFNAR-/- mice displayed a rapid and sustained infiltration of neutrophils, but a limited recruitment of CD11b+Ly-6C+ inflammatory monocytes, into inflamed tissues; interactions between IFNAR-/-, but not wild-type (WT) or STAT1-/-, neutrophils and macrophages greatly enhanced parasite killing in vitro; and infected IFNAR-/- neutrophils efficiently released granular enzymes and had elevated rates of cell apoptosis. Furthermore, although coinjection of parasites with WT neutrophils or adoptive transfer of WT neutrophils into IFNAR-/- recipients significantly enhanced infection, the coinjection of parasites with IFNAR-/- neutrophils greatly reduced parasite survival in WT recipients. Our findings reveal an important role for type I IFNs in regulating neutrophil/monocyte recruitment, neutrophil turnover, and Leishmania infection and provide new insight into innate immunity to protozoan parasites.


Subject(s)
Immunity, Innate , Leishmaniasis, Cutaneous/immunology , Neutrophils/immunology , Receptor, Interferon alpha-beta/immunology , Animals , Chemotaxis, Leukocyte/immunology , Enzyme-Linked Immunosorbent Assay , Female , Leishmania/immunology , Mice , Mice, Knockout , Neutrophils/metabolism , Neutrophils/parasitology , Receptor, Interferon alpha-beta/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL