Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
ACS Macro Lett ; : 1105-1111, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133518

ABSTRACT

The design of mutifunctional protein films for large-area spatially ordered arrays of functional components holds great promise in the field of biomedical applications. Herein, interfacial electrostatic self-assembly was employed to construct a large-scale protein thin film by inducing electrostatic interactions between three bovine serum albumin (BSA)-coated nanoclusters and cetyltrimethylammonium bromide (CTAB), leading to their spontaneous organization and uniform distribution at the oil-water interface. This protein film demonstrated excellent multienzyme functions, high antibacterial activity, and pH-responsive drug release capability. Therefore, it can accelerate the wound closure process through a synergistic effect that includes reducing local blood glucose levels, regulating cellular oxidative stress, eradicating bacteria, and promoting cell proliferation.

2.
J Anim Ecol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056271

ABSTRACT

Repeatability of adaptation to similar environments provides opportunity to evaluate the predictability of natural selection. While many studies have investigated gene expression differences between populations adapted to contrasting environments, the role of post-transcriptional processes such as alternative splicing has rarely been evaluated in the context of parallel adaptation. To address the aforementioned knowledge gap, we reanalysed transcriptomic data from three pairs of threespine stickleback (Gasterosteus aculeatus) ecotypes adapted to marine or freshwater environment. First, we identified genes with repeated expression or splicing divergence across ecotype pairs, and compared the genetic architecture and biological processes between parallelly expressed and parallelly spliced loci. Second, we analysed the extent to which parallel adaptation was reflected at gene expression and alternative splicing levels. Finally, we tested how the two axes of transcriptional variation differed in their potential for evolutionary change. Although both repeated differential splicing and differential expression across ecotype pairs showed tendency for parallel divergence, the degree of parallelism was lower for splicing than expression. Furthermore, parallel divergences in splicing and expression were likely to be associated with distinct cis-regulatory genetic variants and functionally unique set of genes. Finally, we found that parallelly spliced genes showed higher nucleotide diversity than parallelly expressed genes, indicating splicing is less susceptible to genetic variation erosion during parallel adaptation. Our results provide novel insight into the role of splicing in parallel adaptation, and underscore the contribution of splicing to the evolutionary potential of wild populations under environmental change.

3.
J Phys Chem Lett ; 15(31): 7892-7900, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39058960

ABSTRACT

Low-dimension metal halide perovskites are attractive for bandgap tunable optoelectronic materials. Among them, 1-D CsPbBr3 quantum wires (QWs) are emerging as promising deep-blue luminescent material. However, the growth dynamics of 1-D perovskite QWs are intricate, making the study and control of 1-D QWs highly challenging. In this study, a strategy for controlling both the length and width of the CsPbBr3 QWs was realized. The temperature-dependent isotropic growth mechanism was revealed and employed as the main tool for the oriented growth of 1-D CsPbBr3 QWs for various aspect ratios. Our results pave the way for the controlled synthesis of ultrasmall perovskite nanocrystals.

4.
ACS Appl Mater Interfaces ; 16(30): 39399-39407, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031069

ABSTRACT

High-efficiency Pb-Sn narrow-bandgap perovskite solar cells (PSCs) heavily rely on PEDOT:PSS as the hole-transport layer (HTL) owing to its excellent electrical conductivity, dopant-free nature, and facile solution processability. However, the shallow work function (WF) of PEDOT:PSS consequently results in severe minority carrier recombination at the perovskite/HTL interface. Here, we tackle this issue by an in situ interface engineering strategy using a new molecule called 2-fluoro benzylammonium iodide (FBI) that suppresses nonradiative recombination near the Pb-Sn perovskite (FA0.6MA0.4Pb0.4Sn0.6I3)/HTL bottom interface. The WF of PEDOT:PSS increases by 0.1 eV with FBI modification, resulting in Pb-Sn PSCs with 20.5% efficiency and an impressive VOC of 0.843 V. Finally, we have successfully transferred our in situ buried interface modification strategy to fabricate blade-coated FA0.6MA0.4Pb0.4Sn0.6I3 PSCs with 18.3% efficiency and an exceptionally high VOC of 0.845 V.

5.
Opt Express ; 32(8): 13266-13276, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859301

ABSTRACT

We theoretically propose and demonstrate topological parabolic umbilic beams (PUBs) with high-dimensional caustic by mapping catastrophe theory into optics. The PUBs are first experimentally observed via dimensionality reduction. Due to the high-dimensionality, such light beams exhibit rich caustic structures characterized by optical singularities where the high-intensity gradient appears. Further, we propose an improved caustic approach to artificially tailored structured beams which exhibit significant intensity gradient and phase gradient. The properties can trap and drive particles to move along the predesigned trajectory, respectively. The advantages for structured caustic beams likely enable new applications in flexible particle manipulation, light-sheet microscopy, and micromachining.

6.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(5): 514-519, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38845499

ABSTRACT

OBJECTIVE: To investigate the effect of mild hypothermia on macrophage polarization in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and to clarify its role in lung injury. METHODS: According to a random number table method, 18 male C57BL/6 mice were divided into sham operation group (Sham group), ALI normothermic model group (NT group) and ALI mild hypothermia treatment group (HT group), with 6 mice in each group. The ALI model in mice was established by the method of tracheal instillation of LPS, and temperature control was administered at 1 hour after surgery. The anus temperature in NT group was kept at 36-38?centigrade, while the anus temperature in HT group was kept at 32-34?centigrade. The target anus temperature in both groups were maintained for 6 hours and then slowly rewarmed to 36-38 centigrade. The Sham group was infused with an equal amount of physiological saline through the trachea without temperature control. After 24 hours of modeling, serum was collected and mice were sacrificed to obtain lung tissue. Pathological changes in lung tissue were observed under light microscopy and semi-quantitative lung injury score was performed. Enzyme linked immunosorbent assay (ELISA) was used to detect the serum levels of interleukins (IL-1ß, IL-10). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to test the indicators of macrophage polarization, such as the mRNA expressions of CD86, IL-6, CD206 and arginase 1 (Arg1) in the lung tissue. The protein expression of M1 macrophage marker inducible nitric oxide synthase (iNOS) and M2 macrophage marker Arg1 were detected by Western blotting. RESULTS: Compared with the Sham group, the NT group appeared significant pulmonary hemorrhage and edema, thickened lung septum, inflammatory cell infiltration, and lung injury score was significantly increased; serum IL-1ß level was significantly elevated; IL-10 level was increased without statistical significance; the expressions of CD86 mRNA, IL-6 mRNA and iNOS protein were significantly elevated, and CD206 mRNA was significantly decreased; the mRNA and protein expressions of Arg1 decreased, but there were no significant differences. Compared with the NT group, the pathological injury of lung tissue in HT group was significantly reduced, and the lung injury score was significantly decreased (4.78±0.96 vs. 8.56±1.98, P < 0.01); serum IL-1ß level was decreased (ng/L: 13.52±1.95 vs. 27.18±3.87, P < 0.01), and IL-10 level was significantly increased (ng/L: 42.59±15.79 vs. 14.62±4.47, P < 0.01); IL-6 mRNA expression was decreased in lung tissue (2-ΔΔCt: 3.37±0.92 vs. 10.04±0.91, P < 0.05), the expression of M1 macrophage markers CD86 mRNA and iNOS protein were significantly decreased [CD86 mRNA (2-ΔΔCt): 0.52±0.16 vs. 1.95±0.33, iNOS protein (iNOS/ß-actin): 0.57±0.19 vs. 1.11±0.27, both P < 0.05], the expression of M2 macrophage markers CD206 mRNA, Arg1 mRNA and Arg1 protein were significantly increased [CD206 mRNA (2-ΔΔCt): 3.99±0.17 vs. 0.34±0.17, Arg1 mRNA (2-ΔΔCt): 2.33±0.73 vs. 0.94±0.23, Arg1 protein (Arg1/ß-actin): 0.96±0.09 vs. 0.31±0.11, all P < 0.05]. CONCLUSIONS: Mild hypothermia can alleviate the inflammatory response and protect lung tissue in ALI mice, which may be related to the inhibition of M1 macrophage polarization and promotion of M2 macrophage polarization.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Macrophages , Mice, Inbred C57BL , Animals , Acute Lung Injury/therapy , Male , Mice , Macrophages/metabolism , Lipopolysaccharides/adverse effects , Nitric Oxide Synthase Type II/metabolism , Interleukin-10/metabolism , Interleukin-6/metabolism , Hypothermia, Induced , Interleukin-1beta/metabolism , Disease Models, Animal
7.
Shock ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38813935

ABSTRACT

BACKGROUND: Recent observational studies have suggested that osteoporosis may be a risk factor for sepsis. To mitigate confounding factors and establish the causal relationship between sepsis and osteoporosis, we conducted a two-sample Mendelian randomization analysis using publicly available summary statistics. METHODS: Utilizing summary data from FinnGen Biobank, we employed a two-sample Mendelian randomization (MR) analysis to predict the causal relationship between osteoporosis and sepsis. The MR analysis primarily utilized the inverse variance weighted (IVW) method, supplemented by MR-Egger, weighted median, weighted mode, and simple mode analyses, with Bayesian weighted MR (BWMR) analysis employed for result validation. Sensitivity analyses included MR-PRESSO, "leave-one-out" analysis, MR-Egger regression, and Cochran's Q test. RESULTS: In the European population, an increase of one standard deviation in osteoporosis was associated with an 11% increased risk of sepsis, with an odds ratio (OR) of 1.11 (95% CI, 1.06 - 1.16; p = 3.75E-06). BWMR yielded an OR of 1.11 (95% CI, 1.06 - 1.67; p = 1.21E-05), suggesting osteoporosis as a risk factor for sepsis. Conversely, an increase of one standard deviation in sepsis was associated with a 26% increased risk of osteoporosis, with an OR of 1.26 (95% CI, 1.11 - 1.16; p = 0.45E-03). BWMR yielded an OR of 1.26 (95% CI, 1.09 - 1.45; p = 1.45E-03), supporting sepsis as a risk factor for osteoporosis. CONCLUSION: There is a association between osteoporosis and sepsis, with osteoporosis may serving as a risk factor for the development of sepsis, while sepsis may also promote the progression of osteoporosis.

8.
Transl Psychiatry ; 14(1): 228, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816357

ABSTRACT

Depression and obesity are prevalent disorders with significant public health implications. In this study, we used a high-fat diet (HFD)-induced obese mouse model to investigate the mechanism underlying HFD-induced depression-like behaviors. HFD-induced obese mice exhibited depression-like behaviors and a reduction in hippocampus volume, which were reversed by treatment with an indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyltryptophan (1-MT). Interestingly, no changes in IDO levels were observed post-1-MT treatment, suggesting that other mechanisms may be involved in the anti-depressive effect of 1-MT. We further conducted RNA sequencing analysis to clarify the potential underlying mechanism of the anti-depressive effect of 1-MT in HFD-induced depressive mice and found a significant enrichment of shared differential genes in the extracellular matrix (ECM) organization pathway between the 1-MT-treated and untreated HFD-induced depressive mice. Therefore, we hypothesized that changes in ECM play a crucial role in the anti-depressive effect of 1-MT. To this end, we investigated perineuronal nets (PNNs), which are ECM assemblies that preferentially ensheath parvalbumin (PV)-positive interneurons and are involved in many abnormalities. We found that HFD is associated with excessive accumulation of PV-positive neurons and upregulation of PNNs, affecting synaptic transmission in PV-positive neurons and leading to glutamate-gamma-aminobutyric acid imbalances in the hippocampus. The 1-MT effectively reversed these changes, highlighting a PNN-related mechanism by which 1-MT exerts its anti-depressive effect.


Subject(s)
Depression , Diet, High-Fat , Disease Models, Animal , Extracellular Matrix , Hippocampus , Mice, Inbred C57BL , Tryptophan , Animals , Mice , Tryptophan/analogs & derivatives , Tryptophan/pharmacology , Depression/drug therapy , Depression/etiology , Male , Hippocampus/drug effects , Hippocampus/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Obesity/drug therapy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Nerve Net/drug effects
9.
Neuroreport ; 35(7): 447-456, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38597325

ABSTRACT

Our design aimed to explore the potential involvement of matrix metalloproteinase-9 (MMP-9) in the inflammatory response associated with acute ischemic stroke (AIS). We also aimed to preliminarily examine the potential impact of a disintegrin-like and metalloprotease with thrombospondin type I repeats-13 (ADAMTS13) on MMP-9 in AIS. We conducted oxygen-glucose deprivation models of microglia cells and mice models of AIS with middle cerebral artery occlusion (MCAO). We assessed the expression pattern of MMP-9 with western blotting (WB) and real-time quantitative PCR both in vivo and in vitro. MMP-9 downregulation was achieved by using ACE inhibitors such as trandolapril. For the MCAO model, we used ADAMTS13-deficient mice. We then evaluated the related neurological function scores, cerebral edema and infarct volume. The levels of inflammation-related proteins, such as COX2 and iNOS, were assessed using WB, and the expression of inflammatory cytokines was measured via enzyme-linked immuno sorbent assay in vivo. Our findings indicated that MMP-9 was up-regulated while ADAMTS13 was down-regulated in the MCAO model. Knockdown of MMP-9 reduced both inflammation and ischemic brain injury. ADAMTS13 prevented brain damage, improved neurological function and decreased the inflammation response in mice AIS models. Additionally, ADAMTS13 alleviated MMP-9-induced neuroinflammation in vivo. It showed that ADAMTS13 deficiency exacerbated ischemic brain injury through an MMP-9-dependent inflammatory mechanism. Therefore, the ADAMTS13-MMP-9 axis could have therapeutic potential for the treatment of AIS.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Animals , Mice , ADAMTS13 Protein , Brain Injuries/complications , Brain Ischemia/complications , Infarction, Middle Cerebral Artery/complications , Inflammation/complications , Ischemic Stroke/complications , Matrix Metalloproteinase 9/metabolism , Neuroinflammatory Diseases
10.
Mol Ecol ; : e17332, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529738

ABSTRACT

Climate change is intensifying the frequency and severity of extreme temperatures. Understanding the molecular mechanisms underlying the ability to cope with acute thermal stress is key for predicting species' responses to extreme temperature events. While many studies have focused on the individual roles of gene expression, post-transcriptional processes and epigenetic modifications in response to acute thermal stress, the relative contribution of these molecular mechanisms remains unclear. The wide range of thermal limits of western mosquitofish (Gambusia affinis) provides an opportunity to explore this interplay. Here, we quantified changes in gene expression, alternative splicing, DNA methylation and microRNA (miRNA) expression in muscle tissue dissected from mosquitofish immediately after reaching high (CTmax) or low thermal limit (CTmin). Although the numbers of genes showing expression and splicing changes in response to acute temperature stress were small, we found a possibly larger and non-redundant role of splicing compared to gene expression, with more genes being differentially spliced (DSGs) than differentially expressed (DEGs), and little overlap between DSGs and DEGs. We also identified a small proportion of CpGs showing significant methylation change (i.e. differentially methylated cytosines, DMCs) in fish at thermal limits; however, there was no overlap between DEGs and genes annotated with DMCs in both CTmax and CTmin experiments. The weak interplay between epigenetic modifications and gene expression was further supported by our discoveries of no differentially expressed miRNAs. These findings provide novel insights into the relative role of different molecular mechanisms underlying immediate responses to extreme temperatures and demonstrate non-concordant responses of epigenetic and transcriptional mechanisms to acute temperature stress.

11.
ACS Appl Mater Interfaces ; 16(5): 6315-6326, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38277498

ABSTRACT

The development of cell-like nanoreactors with the ability to initiate biocatalytic cascades under special conditions holds tremendous potential for therapeutic applications. Herein, conformationally gated nanoreactors that respond to the acidic microenvironment of infected diabetic wounds were developed by cucur[8]bituril (CB[8])-based supramolecular assembly. The bioinspired nanoreactors exhibit not only self-regulated permeability and selectivity to control internal enzyme activities by substance exchange but also distinct binding specificities toward Gram-positive and Gram-negative bacteria via noncovalent modification with different ligands. The encapsulation of glucose oxidase (GOx), Fe3O4 nanozyme, and l-arginine (l-Arg) into the nanocarriers enables intelligent activation of multienzyme cascade reactions upon glucose (Glu) uptake to produce gluconic acid (GA) and hydrogen peroxide (H2O2), which is further converted into highly toxic hydroxyl radicals (·OH) for selective antibacterial activity. Moreover, acidic H2O2 promotes the oxidization of l-Arg, leading to the release of nitric oxide (NO). Consequently, this nanoreactor provides a multifunctional and synergistic platform for diabetic chronic wound healing by combining enzyme dynamic therapy with NO gas therapy to combat bacterial infections and inflammation under high blood Glu levels.


Subject(s)
Anti-Bacterial Agents , Diabetes Mellitus , Humans , Anti-Bacterial Agents/pharmacology , Hydrogen Peroxide , Gram-Negative Bacteria , Gram-Positive Bacteria , Arginine , Glucose Oxidase , Nitric Oxide , Wound Healing , Nanotechnology
12.
Brain Res ; 1828: 148759, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38242523

ABSTRACT

OBJECTIVE: Inflammation-related factors play a crucial role in intracranial aneurysms (IA) initiation, progression, and rupture. High mobility group box 1 (HMGB-1) serves as an alarm to drive the pathogenesis of the inflammatory disease. This study aimed to evaluate the role of HMGB-1 in IA and explore the correlation with other inflammatory-related factors. METHODS: A total of twenty-eight adult male Japanese white rabbits were included in with elastase-induced aneurysms, n = 18) and the control group (normal rabbits, n = 10). To assess the expression of HMGB-1, both reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) was performed on serum samples obtained from human subjects (10 patients with IA and 10 healthy donors) as well as from rabbits (aneurysm group and control group). Immunohistochemistry and immunofluorescence were employed to evaluate the expression levels of elastic fibers, HMGB-1, tumor necrosis factor-alpha (TNF-α), and triggering receptor expressed on myeloid cells-1 (TREM-1). RESULTS: The expression of HMGB-1 was found to be significantly higher in the IA group compared to the control group, both at the mRNA and protein levels (P < 0.0001). Similar findings were observed in the rabbit aneurysm model group compared to the control group (P < 0.0001). HMGB-1 expression was observed to be more abundant in the inner wall of the aneurysm compared to the external wall, whereas in the control group, it was rarely scattered. Additionally, the localization patterns of TNF-α and TREM-1 exhibited similar characteristics to HMGB-1. CONCLUSION: Our findings demonstrate that HMGB-1 is highly expressed in both IA patients and rabbit aneurysm models. Furthermore, the similar localization patterns of HMGB-1, TNF-α, and TREM-1 suggest their potential involvement in the inflammatory processes associated with IA. These results highlight the potential of HMGB-1 as a novel therapeutic target for IA.


Subject(s)
HMGB1 Protein , Intracranial Aneurysm , Adult , Animals , Humans , Male , Rabbits , Tumor Necrosis Factor-alpha/metabolism , Triggering Receptor Expressed on Myeloid Cells-1 , Intracranial Aneurysm/etiology , Intracranial Aneurysm/pathology , Inflammation/pathology , HMGB Proteins , HMGB1 Protein/metabolism
13.
Nature ; 625(7995): 516-522, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38233617

ABSTRACT

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices1,2. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode3-5. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber6-8. Thus far, evaporable organic molecules9,10 and atomic-layer-deposited metal oxides11,12 have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.

14.
Adv Mater ; 36(2): e2305238, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37665975

ABSTRACT

The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large-area devices. Herein, buried-metal-grid tin-doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140-nm-thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq-1 . The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO-based PSCs, the BMG ITO-based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel-connected large-area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted-structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large-area PSCs.

15.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(10): 1074-1079, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37873713

ABSTRACT

OBJECTIVE: To explore lung ultrasound radiomics features which related to extravascular lung water index (EVLWI), and to predict EVLWI in critically ill patients based on lung ultrasound radiomics combined with machine learning and validate its effectiveness. METHODS: A retrospective case-control study was conducted. The lung ultrasound videos and pulse indicated continuous cardiac output (PiCCO) monitoring results of critically ill patients admitted to the department of critical care medicine of the First Affiliated Hospital of Guangxi Medical University from November 2021 to October 2022 were collected, and randomly divided into training set and validation set at 8:2. The corresponding images from lung ultrasound videos were obtained to extract radiomics features. The EVLWI measured by PiCCO was regarded as the "gold standard", and the radiomics features of training set was filtered through statistical analysis and LASSO algorithm. Eight machine learning models were trained using filtered radiomics features including random forest (RF), extreme gradient boost (XGBoost), decision tree (DT), Naive Bayes (NB), multi-layer perceptron (MLP), K-nearest neighbor (KNN), support vector machine (SVM), and Logistic regression (LR). Receiver operator characteristic curve (ROC curve) was plotted to evaluate the predictive performance of models on EVLWI in the validation set. RESULTS: A total of 151 samples from 30 patients were enrolled (including 906 lung ultrasound videos and 151 PiCCO monitoring results), 120 in the training set, and 31 in the validation set. There were no statistically significant differences in main baseline data including gender, age, body mass index (BMI), mean arterial pressure (MAP), central venous pressure (CVP), heart rate (HR), cardiac index (CI), cardiac function index (CFI), stroke volume index (SVI), global end diastolic volume index (GEDVI), systemic vascular resistance index (SVRI), pulmonary vascular permeability index (PVPI) and EVLWI. The overall EVLWI range in 151 PiCCO monitoring results was 3.7-25.6 mL/kg. Layered analysis showed that both datasets had EVLWI in the 7-15 mL/kg interval, and there was no statistically significant difference in EVLWI distribution. Two radiomics features were selected by using LASSO algorithm, namely grayscale non-uniformity (weight was -0.006 464) and complexity (weight was -0.167 583), and they were used for modeling. ROC curve analysis showed that the MLP model had better predictive performance. The area under the ROC curve (AUC) of the prediction validation set EVLWI was higher than that of RF, XGBoost, DT, KNN, LR, SVM, NB models (0.682 vs. 0.658, 0.657, 0.614, 0.608, 0.596, 0.557, 0.472). CONCLUSIONS: The gray level non-uniformity and complexity of lung ultrasound were the most correlated radiomics features with EVLWI monitored by PiCCO. The MLP model based on gray level non-uniformity and complexity of lung ultrasound can be used for semi-quantitative prediction of EVLWI in critically ill patients.


Subject(s)
Critical Illness , Extravascular Lung Water , Humans , Extravascular Lung Water/diagnostic imaging , Retrospective Studies , Case-Control Studies , Bayes Theorem , China , Lung/diagnostic imaging
16.
World Neurosurg ; 180: e364-e375, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37769840

ABSTRACT

OBJECTIVE: Burr hole drainage (BHD) is the primary surgical intervention for managing chronic subdural hematoma (CSDH). However, it can lead to postoperative complications such as acute bleeding within the hematoma cavity and hematoma recurrence. The objective of this study is to identify the risk factors for these complications and develop a predictive model for acute hematoma cavity bleeding after BHD in patients with CSDH. METHODS: This study presents a retrospective cohort investigation conducted at a single center. The clinical dataset of 308 CSDH patients who underwent BHD at a hospital from 2016 to 2022 was analyzed to develop and assess a prognostic model. RESULTS: The nonbleeding group exhibited a significant correlation between fibrinogen (FIB) and thrombin time (TT), whereas no correlation was observed in the bleeding group. Notably, both FIB and TT were identified as risk factors for postoperative acute bleeding within the hematoma cavity. We developed a prognostic model to predict the occurrence of postoperative acute bleeding within the hematoma cavity after BHD in patients with CSDH. The model incorporated FIB, TT, coronary artery disease, and Glasgow Coma Scale scores. The model exhibited good discrimination (area under the curve: 0.725) and calibration (Hosmer-Leeshawn goodness of fit test: P > 0.1). Furthermore, decision curve analysis demonstrated the potential clinical benefit of implementing this prediction model. CONCLUSIONS: The predictive model developed in this study can forecast the risk of postoperative acute bleeding within the hematoma cavity, thus aiding clinicians in selecting the optimal treatment approach for patients with CSDH.


Subject(s)
Hematoma, Subdural, Chronic , Humans , Retrospective Studies , Hematoma, Subdural, Chronic/surgery , Trephining/adverse effects , Drainage/adverse effects , Postoperative Hemorrhage/epidemiology , Postoperative Hemorrhage/etiology , Postoperative Hemorrhage/surgery , Fibrinogen , Recurrence
17.
Chem Commun (Camb) ; 59(60): 9157-9166, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37431289

ABSTRACT

In nature, enantiomers are pairs of chiral compounds, and have semblable chemical and physical properties but mostly show opposite biological effects when they enter an organism. Therefore, chiral recognition has a crucial research value in the fields of medicine, food, biochemistry, etc. Cyclodextrins (CDs) are produced by cyclodextrin glucosyltransferase in some species of bacillus on starch and include three main members α-, ß-, and γ-CD with six, seven and eight units of glucose, respectively. With a hydrophilic external cavity and a hydrophobic internal cavity, ß-CD can also combine with a variety of materials (e.g., graphene, nanoparticles, COFs, and OFETs) to enhance the chiral recognition of guest molecules in a chiral sensor. This review presents the progress of ß-CD modification with different materials for chiral recognition and describes in detail how different materials assist ß-CD in chiral recognition and improve the effect of ß-CD chiral discrimination.

18.
J Korean Neurosurg Soc ; 66(5): 598-604, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37337741

ABSTRACT

Penetrating head injury is a serious open cranial injury. In civilians, it is often caused by non-missile, low velocity flying objects that penetrate the skull through a weak cranial structure, forming intracranial foreign bodies. The intracranial foreign body can be displaced due to its special quality, shape, and location. In this paper, we report a rare case of right-to-left displacement of an airgun lead bullet after transorbital entry into the skull complicated by posttraumatic epilepsy, as a reminder to colleagues that intracranial metal foreign bodies maybe displaced intraoperatively. In addition, we have found that the presence of intracranial metallic foreign bodies may be a factor for the posttraumatic epilepsy, and their timely removal appears to be beneficial for epilepsy control.

19.
Front Genet ; 14: 1108104, 2023.
Article in English | MEDLINE | ID: mdl-36911387

ABSTRACT

Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.

20.
Opt Express ; 31(5): 7480-7491, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859877

ABSTRACT

Using angular spectral representation, we demonstrate a generalized approach for generating high-dimensional elliptic umbilic and hyperbolic umbilic caustics by phase holograms. The wavefronts of such umbilic beams are investigated via the diffraction catastrophe theory determined by the potential function, which depends on the state and control parameters. We find that the hyperbolic umbilic beams degenerate into classical Airy beams when the two control parameters are simultaneously equal to zero, and elliptic umbilic beams possess an intriguing autofocusing property. Numerical results demonstrate that such beams exhibit clear umbilics in 3D caustic, which link the two separated parts. The dynamical evolutions verify that they both possess prominent self-healing properties. Moreover, we demonstrate that hyperbolic umbilic beams follow along a curve trajectory during propagation. As the numerical calculation of diffraction integral is relatively complex, we have developed an effective approach for successfully generating such beams by using phase hologram represented by angular spectrum. Our experimental results are in good agreement with the simulations. Such beams with intriguing properties are likely to be applied in emerging fields such as particle manipulation and optical micromachining.

SELECTION OF CITATIONS
SEARCH DETAIL