Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Anim Sci Biotechnol ; 15(1): 60, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693536

ABSTRACT

BACKGROUND: Goose, descendants of migratory ancestors, have undergone extensive selective breeding, resulting in their remarkable ability to accumulate fat in the liver and exhibit a high tolerance for significant energy intake. As a result, goose offers an excellent model for studying obesity, metabolic disorders, and liver diseases in mammals. Although the impact of the three-dimensional arrangement of chromatin within the cell nucleus on gene expression and transcriptional regulation is widely acknowledged, the precise functions of chromatin architecture reorganization during fat deposition in goose liver tissues still need to be fully comprehended. RESULTS: In this study, geese exhibited more pronounced changes in the liver index and triglyceride (TG) content following the consumption of the high-fat diet (HFD) than mice without significant signs of inflammation. Additionally, we performed comprehensive analyses on 10 goose liver tissues (5 HFD, 5 normal), including generating high-resolution maps of chromatin architecture, conducting whole-genome gene expression profiling, and identifying H3K27ac peaks in the livers of geese and mice subjected to the HFD. Our results unveiled a multiscale restructuring of chromatin architecture, encompassing Compartment A/B, topologically associated domains, and interactions between promoters and enhancers. The dynamism of the three-dimensional genome architecture, prompted by the HFD, assumed a pivotal role in the transcriptional regulation of crucial genes. Furthermore, we identified genes that regulate chromatin conformation changes, contributing to the metabolic adaptation process of lipid deposition and hepatic fat changes in geese in response to excessive energy intake. Moreover, we conducted a cross-species analysis comparing geese and mice exposed to the HFD, revealing unique characteristics specific to the goose liver compared to a mouse. These chromatin conformation changes help elucidate the observed characteristics of fat deposition and hepatic fat regulation in geese under conditions of excessive energy intake. CONCLUSIONS: We examined the dynamic modifications in three-dimensional chromatin architecture and gene expression induced by an HFD in goose liver tissues. We conducted a cross-species analysis comparing that of mice. Our results contribute significant insights into the chromatin architecture of goose liver tissues, offering a novel perspective for investigating mammal liver diseases.

3.
Front Genet ; 14: 1120350, 2023.
Article in English | MEDLINE | ID: mdl-36968579

ABSTRACT

Background: Studies demonstrated that age-related cellular and functional changes of airway significantly contribute to the pathogenesis of many airway diseases. However, our understanding on the age-related molecular alterations of human airway remains inadequate. Methods: Airway (trachea and bronchus) brushing specimens were collected from 14 healthy, female non-smokers with ages ranging from 20 to 60 years. Bulk RNA sequencing was performed on all the specimens (n = 28). Airway cell types and their relative proportions were estimated using CIBERSORTx. The cell type proportions were compared between the younger (age 20-40) and elder group (age 40-60) in the trachea and bronchus respectively. The linear association between cell type proportion and age was assessed using the Pearson correlation coefficient. Differentially expressed genes (DEGs) between the two age groups were identified using DESeq2. Three kinds of enrichment analysis of the age-related DEGs were performed, including Gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and disease enrichment analysis. Results: Sixteen and thirteen cell types were separately identified in tracheal and bronchial brushings, with the airway epithelial cells (including suprabasal, submucosal gland (SMG) goblet, serous, secretory, multiciliated, cycling.basal, basal cells) accounting for 85.1% in the trachea and 92.5% in the bronchus. The lymphatic cell and NK cells had a higher abundance ratio in the trachea, compared with the bronchus. The proportion of basal cells was negatively related to age both in the trachea and bronchus. Thirty-one and fifty-two age-related DEGs (p < 0.1) were identified in the trachea and bronchus, respectively. Among them, five common DEGs (CXCL2, CXCL8, TCIM, P4HA3, AQP10) were identified. Pathway enrichment analysis showed both tracheal and bronchial age-related DEGs were primarily involved in immune regulatory signaling pathways (TNF, NF-kappa B, IL-17 et al.). Disease enrichment analysis suggested that tracheal age-related DEGs significantly related to asthmatic pulmonary eosinophilia, and chronic airflow obstruction et al., and that bronchial age-related DEGs were enriched in airflow obstruction, bronchiectasis, pulmonary emphysema, and low respiratory tract infection et al. Conclusion: We found the proportion of basal cells decreased with age in both the trachea and bronchus, suggesting a weakening of their self-renew ability with age. We identified transcriptomic signature genes associated with the early aging process of the human trachea and bronchus, and provided evidence to support that changes in their immune regulatory function may play critical roles in age-related airway diseases.

4.
Anim Biotechnol ; 34(7): 2596-2607, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35960868

ABSTRACT

Domestication caused significant differences in morphology and behavior between wild and domestic pigs. However, the regulatory role of circRNA in this event is unclear. Here, we analyzed circRNA expression patterns in the prefrontal cortices of wild boar and domestic pigs to determine the potential role of circRNAs in domestication. We identified a total of 11,375 circRNAs and found that 349 and 354 circRNAs were up-regulated in wild boar and Rongchang pig, respectively. Functional enrichment analysis showed that host genes of significantly highly-expressed circRNAs in wild boar were significantly enriched in neural synapse-related categories and the categories of 'regulation of defense response (p = 0.028)' and 'neural retina development (p = 4.32 × 10-3)'. Host genes of significantly highly-expressed circRNAs in Rongchang pig were specifically involved in 'chordate embryonic development (p = 2.38 × 10-4)'. Additionally, we constructed circRNA-miRNA-mRNA regulatory axes in wild boar and Rongchang pig and found more regulatory axes in wild boar that potentially regulate synaptic activities. We identified multiple circRNAs that may be related to domesticated characteristics, such as ssc_circ_6179 (ssc_circ_6179-ssc-miR-9847-HRH3, related to aggression) and ssc_circ_3027 (ssc_circ_3027-ssc-miR-4334-5p-HCRTR1, related to attention). This study provides a resource for further investigation of the molecular basis of pig domestication.


Subject(s)
MicroRNAs , Sus scrofa , Swine/genetics , Animals , Sus scrofa/genetics , RNA, Circular/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Genes (Basel) ; 13(12)2022 12 08.
Article in English | MEDLINE | ID: mdl-36553580

ABSTRACT

The breast muscle is essential for flight and determines the meat yield and quality of the meat type in pigeons. At present, studies about long non-coding RNA (lncRNA) expression profiles in skeletal muscles across the postnatal development of pigeons have not been reported. Here, we used transcriptome sequencing to examine the White-King pigeon breast muscle at four different ages (1 day, 14 days, 28 days, and 2 years old). We identified 12,918 mRNAs and 9158 lncRNAs (5492 known lncRNAs and 3666 novel lncRNAs) in the breast muscle, and 7352 mRNAs and 4494 lncRNAs were differentially expressed in the process of development. We found that highly expressed mRNAs were mainly related to cell-basic and muscle-specific functions. Differential expression and time-series analysis showed that differentially expressed genes were primarily associated with muscle development and functions, blood vessel development, cell cycle, and energy metabolism. To further predict the possible role of lncRNAs, we also conducted the WGCNA and trans/cis analyses. We found that differentially expressed lncRNAs such as lncRNA-LOC102093252, lncRNA-G12653, lncRNA-LOC110357465, lncRNA-G14790, and lncRNA-LOC110360188 might respectively target UBE2B, Pax7, AGTR2, HDAC1, Sox8 and participate in the development of the muscle. Our study provides a valuable resource for studying the lncRNAs and mRNAs of pigeon muscles and for improving the understanding of molecular mechanisms in muscle development.


Subject(s)
RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Regulatory Networks , Columbidae/genetics , Columbidae/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Pectoralis Muscles/metabolism
6.
Animals (Basel) ; 12(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36359049

ABSTRACT

The intestine is a tubular organ with multiple functions such as digestion absorption and immunity, but the functions of each intestinal segments are different. Intestinal regionalization is necessary for normal physiological function, but it also means the research results obtained at specific sites may not be applicable to other intestinal segments. In order to comprehensively describe the functional changes in the intestine, different intestinal segments and their contents (duodenum, jejunum, ileum, cecum, colon, and rectum) of guinea pigs were collected for RNA seq and 16S rRNA seq, respectively. The results showed differential genes of each intestinal segment mainly involve mucosa, digestion, absorption, and immunity. The gene sets related to fat, bill salts, vitamins, aggregates, amino acids, and water absorption were highly expressed in the small intestine, and the gene sets related to metal ions, nucleotides, and SCFAs were highly expressed in the large intestine. In terms of immunity, the CD8+ T, Th1, eosinophils, pDCs, and natural killer (NK) T cells in the small intestine showed higher scores than those in the large intestine, while the pattern-recognition receptor signaling pathway-related genes are highly expressed in the large intestine. In terms of microbial composition, Proteobacteria and Actinobacteria are abundant in the small intestine, while Firmicutes and Spirochaete are abundant in large intestine. The correlation analysis showed a high correlation between intestinal microorganisms and gene modules related to digestion and absorption. In addition, cross-species analysis showed the SCFA metabolism gene expression trends in human and rodent intestine were different. In conclusion, we analyzed the changes in substance transport, immune and microbial composition between different intestinal segments of guinea pigs, and explored the relationship between intestinal transcriptome and microorganisms, our research will provides a reference for subsequent intestinal-related research.

7.
Genomics ; 114(6): 110501, 2022 11.
Article in English | MEDLINE | ID: mdl-36270383

ABSTRACT

BACKGROUND: The iconic giant panda (Ailuropoda melanoleuca), as both a flagship and umbrella species endemic to China, is a world famous symbol for wildlife conservation. The giant panda has several specific biological traits and holds a relatively small place in evolution. A high-quality genome of the giant panda is key to understanding the biology of this vulnerable species. FINDINGS: We generated a 2.48-Gb chromosome-level genome (GPv1) of the giant panda named "Jing Jing" with a contig N50 of 28.56 Mb and scaffold N50 of 134.17 Mb, respectively. The total length of chromosomes (n = 21) was 2.39-Gb, accounting for 96.4% of the whole genome. Compared with the previously published four genomes of the giant panda, our genome is characterized by the highest completeness and the correct sequence orientation. A gap-free and 850 kb length of immunoglobulin heavy-chain gene cluster was manually annotated in close proximity to the telomere of chromosome 14. Additionally, we developed an algorithm to predict the centromere position of each chromosome. We also constructed a complete chromatin structure for "Jing Jing", which includes inter-chromosome interaction pattern, A/B compartment, topologically associated domain (TAD), TAD-clique and promoter-enhancer interaction (PEI). CONCLUSIONS: We presented an improved chromosome-level genome and complete chromatin structure for the giant panda. This is a valuable resource for the future genetic and genomic studies on giant panda.


Subject(s)
Ursidae , Animals , Ursidae/genetics , Genomics , China , Chromosomes/genetics , Chromatin
8.
Front Immunol ; 13: 916086, 2022.
Article in English | MEDLINE | ID: mdl-35958547

ABSTRACT

The bursa of Fabricius (BF) is the critical humoral immune organ to birds, playing an essential role in B lymphocyte differentiation. However, unlike other poultries, surgical removal of pigeon BF did not limit humoral immune responsiveness. To investigate the expression profiles and the potential role of mRNA and long non-coding RNA (LncRNA) in squab BFs, transcriptome analysis was performed by RNA-Sequencing (RNA-Seq) over three developmental stages (1-day, 13 and 26 days old). We identified 13,072 mRNAs and 19,129 lncRNAs, of which 2,752 mRNAs and 1,515 lncRNAs were differential expressed (DE) in pigeon BFs over three developmental stages. Cluster analysis presented different expression patterns in DE mRNAs and lncRNAs. Functional enrichment analysis revealed that DE lncRNAs and mRNAs with distinct expression patterns might play crucial roles in the immune system process and tissue morphogenesis. In particular, some DE genes and lncRNAs with higher expression levels in 13D or 26D are related to lymphocyte activation and differentiation, adaptive immune response, positive regulation of immune response, leukocyte migration, etc. Protein-protein interaction (PPI) network and Molecular Complex Detection (MCODE) analysis sreened six significant modules containing 37 genes from immune-related DE gene cluster, which is closely linked in B cell activation, lymphocyte differentiation, B cell receptor signaling pathway, etc. Our study characterizes mRNA and lncRNA transcriptomic variability in pigeon BFs over different developmental stages and enhances understanding of the mechanisms underlying physiological functions of pigeon BF.


Subject(s)
RNA, Long Noncoding , Animals , Bursa of Fabricius , Columbidae/genetics , Columbidae/metabolism , Gene Expression Profiling , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
PeerJ ; 10: e13250, 2022.
Article in English | MEDLINE | ID: mdl-35646489

ABSTRACT

Background: Fat accumulation in visceral adipose tissue (VAT) confers increased risk for metabolic disorders of obesity, whereas accumulation of subcutaneous adipose tissue (SAT) is associated with lower risk and may be protective. Previous studies have shed light on the gene expression profile differences between SAT and VAT; however, the chromatin accessibility landscape differences and how the cis-regulatory elements govern gene expression changes between SAT and VAT are unknown. Methods: Pig were used to characterize the differences in chromatin accessibility between the two adipose depots-derived stromal vascular fractions (SVFs) using DNase-sequencing (DNase-seq). Using integrated data from DNase-seq, H3K27ac ChIP-sequencing (ChIP-seq), and RNA-sequencing (RNA-seq), we investigated how the regulatory locus complexity regulated gene expression changes between SAT and VAT and the possible impact that these changes may have on the different biological functions of these two adipose depots. Results: SVFs form SAT and VAT (S-SVF and V-SVF) have differential chromatin accessibility landscapes. The differential DNase I hypersensitive site (DHS)-associated genes, which indicate dynamic chromatin accessibility, were mainly involved in metabolic processes and inflammatory responses. Additionally, the Krüppel-like factor family of transcription factors were enriched in the differential DHSs. Furthermore, the chromatin accessibility data were highly associated with differential gene expression as indicated using H3K27ac ChIP-seq and RNA-seq data, supporting the validity of the differential gene expression determined using DNase-seq. Moreover, by combining epigenetic and transcriptomic data, we identified two candidate genes, NR1D1 and CRYM, could be crucial to regulate distinct metabolic and inflammatory characteristics between SAT and VAT. Together, these results uncovered differences in the transcription regulatory network and enriched the mechanistic understanding of the different biological functions between SAT and VAT.


Subject(s)
Chromatin , Intra-Abdominal Fat , Animals , Swine , Chromatin/genetics , Intra-Abdominal Fat/metabolism , Subcutaneous Fat/metabolism , Gene Expression Profiling , Obesity/genetics , Deoxyribonucleases/genetics
10.
BMC Biol ; 20(1): 99, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35524220

ABSTRACT

BACKGROUND: The three-dimensional (3D) architecture of the genome has a highly ordered and hierarchical nature, which influences the regulation of essential nuclear processes at the basis of gene expression, such as gene transcription. While the hierarchical organization of heterochromatin and euchromatin can underlie differences in gene expression that determine evolutionary differences among species, the way 3D genome architecture is affected by evolutionary forces within major lineages remains unclear. Here, we report a comprehensive comparison of 3D genomes, using high resolution Hi-C data in fibroblast cells of fish, chickens, and 10 mammalian species. RESULTS: This analysis shows a correlation between genome size and chromosome length that affects chromosome territory (CT) organization in the upper hierarchy of genome architecture, whereas lower hierarchical features, including local transcriptional availability of DNA, are selected through the evolution of vertebrates. Furthermore, conservation of topologically associating domains (TADs) appears strongly associated with the modularity of expression profiles across species. Additionally, LINE and SINE transposable elements likely contribute to heterochromatin and euchromatin organization, respectively, during the evolution of genome architecture. CONCLUSIONS: Our analysis uncovers organizational features that appear to determine the conservation and transcriptional regulation of functional genes across species. These findings can guide ongoing investigations of genome evolution by extending our understanding of the mechanisms shaping genome architecture.


Subject(s)
Chromatin , Heterochromatin , Animals , Chickens/genetics , DNA Transposable Elements , Euchromatin/genetics , Heterochromatin/genetics , Mammals/genetics , Vertebrates/genetics
11.
Cells ; 11(4)2022 02 21.
Article in English | MEDLINE | ID: mdl-35203402

ABSTRACT

Beige adipocytes are a distinct type of fat cells with a thermogenic activity that have gained substantial attention as an alternative cellular anti-obesity target in humans. These cells may provide an alternative strategy for the genetic selection of pigs with reduced fat deposition. Despite the presence of beige adipocytes in piglets, the molecular signatures of porcine beige adipocytes remain unclear. Here, white and beige adipocytes from Tibetan piglets were primarily cultured and differentiated. Compared to the white adipocytes, the beige adipocytes exhibited a stronger thermogenic capacity. RNA-sequencing-based genome-wide comparative analyses revealed distinct gene expression profiles for white and beige adipocytes. In addition, two genes, integrin alpha-2 (ITGA2) and calponin 1 (CNN1), which were specifically differentially expressed in porcine beige adipocytes, were further functionally characterized using a loss-of-function approach. Our data showed that both genes were involved in differentiation and thermogenesis of porcine beige adipocytes. Collectively, these data furthered our understanding of gene expression in porcine white and beige adipocytes. Elucidating the genetic basis of beige adipogenesis in pigs will pave the way for molecular design breeding in both pigs and large animal models of human diseases.


Subject(s)
Adipocytes, Beige , Adipocytes, Beige/metabolism , Adipocytes, White , Adipogenesis/genetics , Animals , Cell Differentiation/genetics , Swine , Thermogenesis/genetics
12.
Animals (Basel) ; 11(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070248

ABSTRACT

Long non-coding RNAs (lncRNAs) and mRNAs are temporally expressed during chicken follicle development. However, follicle transcriptome studies in chickens with timepoints relating to changes in luteinizing hormone (LH) levels are rare. In this study, gene expression in Rohman layers was investigated at three distinct stages of the ovulatory cycle: zeitgeber time 0 (ZT0, 9:00 a.m.), zeitgeber time 12 (ZT12, 9:00 p.m.), and zeitgeber time 20 (ZT20, 5:00 a.m.) representing the early, middle, and LH surge stages, respectively, of the ovulatory cycle. Gene expression profiles were explored during follicle development at ZT0, ZT12, and ZT20 using Ribo-Zero RNA sequencing. The three stages were separated into two major stages, including the pre-LH surge and the LH surge stages. A total of 12,479 mRNAs and 7528 lncRNAs were identified among the three stages, and 4531, 523 differentially expressed genes (DEGs) and 2367, 211 differentially expressed lncRNAs (DELs) were identified in the ZT20 vs. ZT12, and ZT12 vs. ZT0, comparisons. Functional enrichment analysis revealed that genes involved in cell proliferation and metabolism processes (lipid-related) were mainly enriched in the ZT0 and ZT12 stages, respectively, and genes related to oxidative stress, steroids regulation, and inflammatory process were enriched in the ZT20 stage. These findings provide the basis for further investigation of the specific genetic and molecular functions of follicle development in chickens.

13.
Nat Commun ; 12(1): 3715, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140474

ABSTRACT

A comprehensive transcriptomic survey of pigs can provide a mechanistic understanding of tissue specialization processes underlying economically valuable traits and accelerate their use as a biomedical model. Here we characterize four transcript types (lncRNAs, TUCPs, miRNAs, and circRNAs) and protein-coding genes in 31 adult pig tissues and two cell lines. We uncover the transcriptomic variability among 47 skeletal muscles, and six adipose depots linked to their different origins, metabolism, cell composition, physical activity, and mitochondrial pathways. We perform comparative analysis of the transcriptomes of seven tissues from pigs and nine other vertebrates to reveal that evolutionary divergence in transcription potentially contributes to lineage-specific biology. Long-range promoter-enhancer interaction analysis in subcutaneous adipose tissues across species suggests evolutionarily stable transcription patterns likely attributable to redundant enhancers buffering gene expression patterns against perturbations, thereby conferring robustness during speciation. This study can facilitate adoption of the pig as a biomedical model for human biology and disease and uncovers the molecular bases of valuable traits.


Subject(s)
Adipose Tissue/metabolism , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , RNA, Circular/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Transcriptome/genetics , Alternative Splicing , Animals , Biological Evolution , Cell Line , Cell Lineage , Cell Nucleus/genetics , Cell Nucleus/metabolism , Enhancer Elements, Genetic , Evolution, Molecular , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs/genetics , Mitochondria/metabolism , Molecular Conformation , Myofibrils/genetics , Myofibrils/metabolism , Phylogeny , Promoter Regions, Genetic , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Spatial Analysis , Swine
14.
DNA Res ; 28(2)2021 May 02.
Article in English | MEDLINE | ID: mdl-34009337

ABSTRACT

Myofibres (primary and secondary myofibre) are the basic structure of muscle and the determinant of muscle mass. To explore the skeletal muscle developmental processes from primary myofibres to secondary myofibres in pigs, we conducted an integrative three-dimensional structure of genome and transcriptomic characterization of longissimus dorsi muscle of pig from primary myofibre formation stage [embryonic Day 35 (E35)] to secondary myofibre formation stage (E80). In the hierarchical genomic structure, we found that 11.43% of genome switched compartment A/B status, 14.53% of topologically associating domains are changed intradomain interactions (D-scores) and 2,730 genes with differential promoter-enhancer interactions and (or) enhancer activity from E35 to E80. The alterations of genome architecture were found to correlate with expression of genes that play significant roles in neuromuscular junction, embryonic morphogenesis, skeletal muscle development or metabolism, typically, NEFL, MuSK, SLN, Mef2D and GCK. Significantly, Sox6 and MATN2 play important roles in the process of primary to secondary myofibres formation and increase the regulatory potential score and genes expression in it. In brief, we reveal the genomic reorganization from E35 to E80 and construct genome-wide high-resolution interaction maps that provide a resource for studying long-range control of gene expression from E35 to E80.


Subject(s)
Chromatin/metabolism , Embryo, Mammalian/metabolism , Muscle Development , Muscle, Skeletal/growth & development , Sus scrofa/genetics , Transcriptome , Animals , Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation Sequencing , Embryonic Development , Female , Gene Expression Regulation, Developmental , Muscle, Skeletal/metabolism , Sequence Analysis, RNA , Sus scrofa/growth & development , Sus scrofa/metabolism
15.
Front Genet ; 12: 602583, 2021.
Article in English | MEDLINE | ID: mdl-33777090

ABSTRACT

Geese are one of the most economically important waterfowl. However, the low reproductive performance and egg quality of geese hinder the development of the goose industry. The identification and application of genetic markers may improve the accuracy of beneficial trait selection. To identify the genetic markers associated with goose reproductive performance and egg quality traits, we performed a genome-wide association study (GWAS) for body weight at birth (BBW), the number of eggs at 48 weeks of age (EN48), the number of eggs at 60 weeks of age (EN60) and egg yolk color (EYC). The GWAS acquired 2.896 Tb of raw sequencing data with an average depth of 12.44× and identified 9,279,339 SNPs. The results of GWAS showed that 26 SNPs were significantly associated with BBW, EN48, EN60, and EYC. Moreover, five of these SNPs significantly associated with EN48 and EN60 were in a haplotype block on chromosome 35 from 4,512,855 to 4,541,709 bp, oriented to TMEM161A and another five SNPs significantly correlated to EYC were constructed in haplotype block on chromosome 5 from 21,069,009 to 21,363,580, which annotated by TMEM161A, CALCR, TFPI2, and GLP1R. Those genes were enriched in epidermal growth factor-activated receptor activity, regulation of epidermal growth factor receptor signaling pathway. The SNPs, haplotype markers, and candidate genes identified in this study can be used to improve the accuracy of marker-assisted selection for the reproductive performance and egg quality traits of geese. In addition, the candidate genes significantly associated with these traits may provide a foundation for better understanding the mechanisms underlying reproduction and egg quality in geese.

16.
Front Genet ; 12: 786287, 2021.
Article in English | MEDLINE | ID: mdl-34992633

ABSTRACT

Granulosa cells (GCs) are decisive players in follicular development. In this study, the follicle tissues and GCs were isolated from the goose during the peak-laying period to perform hematoxylin-eosin staining and RNA-seq, respectively. Moreover, the dynamic mRNA and lncRNA expression profiles and mRNA-lncRNA network analysis were integrated to identify the important genes and lncRNAs. The morphological analysis showed that the size of the GCs did not significantly change, but the thickness of the granulosa layer cells differed significantly across the developmental stages. Subsequently, 14,286 mRNAs, 3,956 lncRNAs, and 1,329 TUCPs (transcripts with unknown coding potential) were detected in the GCs. We identified 37 common DEGs in the pre-hierarchical and hierarchical follicle stages, respectively, which might be critical for follicle development. Moreover, 3,089 significant time-course DEGs (Differentially expressed genes) and 13 core genes in 4 clusters were screened during goose GCs development. Finally, the network lncRNA G8399 with CADH5 and KLF2, and lncRNA G8399 with LARP6 and EOMES were found to be important for follicular development in GCs. Thus, the results would provide a rich resource for elucidating the reproductive biology of geese and accelerate the improvement of the egg-laying performance of geese.

17.
Gigascience ; 9(10)2020 10 24.
Article in English | MEDLINE | ID: mdl-33099628

ABSTRACT

BACKGROUND: The domestic goose is an economically important and scientifically valuable waterfowl; however, a lack of high-quality genomic data has hindered research concerning its genome, genetics, and breeding. As domestic geese breeds derive from both the swan goose (Anser cygnoides) and the graylag goose (Anser anser), we selected a female Tianfu goose for genome sequencing. We generated a chromosome-level goose genome assembly by adopting a hybrid de novo assembly approach that combined Pacific Biosciences single-molecule real-time sequencing, high-throughput chromatin conformation capture mapping, and Illumina short-read sequencing. FINDINGS: We generated a 1.11-Gb goose genome with contig and scaffold N50 values of 1.85 and 33.12 Mb, respectively. The assembly contains 39 pseudo-chromosomes (2n = 78) accounting for ∼88.36% of the goose genome. Compared with previous goose assemblies, our assembly has more continuity, completeness, and accuracy; the annotation of core eukaryotic genes and universal single-copy orthologs has also been improved. We have identified 17,568 protein-coding genes and a repeat content of 8.67% (96.57 Mb) in this genome assembly. We also explored the spatial organization of chromatin and gene expression in the goose liver tissues, in terms of inter-pseudo-chromosomal interaction patterns, compartments, topologically associating domains, and promoter-enhancer interactions. CONCLUSIONS: We present the first chromosome-level assembly of the goose genome. This will be a valuable resource for future genetic and genomic studies on geese.


Subject(s)
Geese , Genome , Animals , Chromosomes/genetics , Female , Geese/genetics , Genomics , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation
18.
Front Genet ; 11: 845, 2020.
Article in English | MEDLINE | ID: mdl-32849828

ABSTRACT

Local hypoxia has recently been reported to occur in the white adipose tissue (WAT) microenvironment during obesity. Adipocytes have a unique life cycle that reflects the different stages of adipogenesis in the WAT niche. Long non-coding RNAs (lncRNAs) play an important role in the cellular response to hypoxia. However, the differentially hypoxic responses of preadipocytes during adipogenesis and the potential role of lncRNAs in this process remain to be elucidated. Here, we evaluated the differentially hypoxic responses of primary hamster preadipocytes during adipogenesis and analyzed mRNA and lncRNA expression in same Ribo-Zero RNA-seq libraries. Hypoxia induced HIF-1α protein during adipogenesis and caused divergent changes of cell phenotypes. A total of 10,318 mRNAs were identified to be expressed in twenty libraries (five timepoints), and 3,198 differentially expressed mRNAs (DE mRNAs) were detected at five timepoints (hypoxia vs. normoxia). Functional enrichment analysis revealed the shared and specific hypoxia response pathways in the different stages of adipogenesis. Hypoxia differentially modulated the expression profile of adipose-associated genes, including adipokines, lipogenesis, lipolysis, hyperplasia, hypertrophy, inflammatory, and extracellular matrix. We also identified 4,296 lncRNAs that were expressed substantially and detected 1,431 DE lncRNAs at five timepoints. Two, 3, 5, 13, and 50 DE mRNAs at D0, D1, D3, D7, and D11, respectively, were highly correlated and locus-nearby DE lncRNAs and mainly involved in the cell cycle, vesicle-mediated transport, and mitochondrion organization. We identified 28 one-to-one lncRNA-mRNA pairs that might be closely related to adipocyte functions, such as ENSCGRT00015041780-Hilpda, TU2105-Cdsn, and TU17588-Ltbp3. These lncRNAs may represent the crucial regulation axis in the cellular response to hypoxia during adipogenesis. This study dissected the effects of hypoxia in the cell during adipogenesis, uncovered novel regulators potentially associated with WAT function, and may provide a new viewpoint for interpretation and treatment of obesity.

19.
Front Genet ; 11: 574, 2020.
Article in English | MEDLINE | ID: mdl-32612636

ABSTRACT

The liver is the major organ of lipid biosynthesis in the chicken. In laying hens, the liver synthesizes most of the yolk precursors and transports them to developing follicles to produce eggs. However, a systematic investigation of the long non-coding RNA (lncRNA) and mRNA transcriptome in liver across developmental stages is needed. Here, we constructed 12 RNA libraries from liver tissue during four developmental stages: juvenile (day 60), sexual maturity (day 133), peak laying (day 220), and broodiness (day 400). A total of 16,930 putative lncRNAs and 18,260 mRNAs were identified. More than half (53.70%) of the lncRNAs were intergenic lncRNAs. The temporal expression pattern showed that lncRNAs were more restricted than mRNAs. We identified numerous differentially expressed lncRNAs and mRNAs by pairwise comparison between the four developmental stages and found that VTG2, RBP, and a novel protein-coding gene were differentially expressed in all stages. Time-series analysis showed that the modules with upregulated genes were involved in lipid metabolism processes. Co-expression networks suggested functional relatedness between mRNAs and lncRNAs; the DE-lncRNAs were mainly involved in lipid biosynthesis and metabolism processes. We showed that the liver transcriptome varies across different developmental stages. Our results improve our understanding of the molecular mechanisms underlying liver development in chickens.

20.
BMC Genomics ; 20(1): 372, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31088359

ABSTRACT

BACKGROUND: Dysregulation of adipogenesis causes metabolic diseases, like obesity and fatty liver. Migratory birds such as geese have a high tolerance of massive energy intake and exhibit little pathological development. Domesticated goose breeds, derivatives of the wild greyleg goose (Anser anser) or swan goose (Anser cygnoides), have high tolerance of energy intake resembling their ancestor species. Thus, goose is potentially a model species to study mechanisms associated with adipogenesis. RESULTS: Phenotypically, goose liver exhibited higher fat accumulation than adipose tissues during fattening (liver increased by 3.35 fold than 1.65 fold in adipose), showing a priority of fat accumulation in liver. We found the number of differentially expressed genes in liver (13.97%) was nearly twice the number of that in adipose (6.60%). These differentially expressed genes in liver function in several important lipid metabolism pathways, immune response, regulation of cancer, while in adipose, terms closely related to protein binding, gluconeogenesis were enriched. Typically, genes like MDH2 and SCD, which have key roles in glycolysis and fatty acids metabolism, had higher fold change in liver than in adipose tissues. Three hundred two differentially expressed long noncoding RNAs involved in regulation of metabolism in liver were also identified. For example, lncRNA XLOC_292762, which was 5.7 kb downstream of FERMT2, a gene involved phosphatidylinositol-3,4,5-trisphosphate binding, was significantly down-regulated after the high-intake feeding period. Further investigation of documented obesity-related orthologous genes in goose suggested that understanding the evolutionary split from mammals in adipogenesis will make goose fatty liver a better resource for future research. CONCLUSIONS: Our research reveals that goose uses liver as the major tissue to regulate a distinct lipid synthesis and degradation flux and the dynamic expression network analyses showed numerous layers of positive responses to both massive energy intake and possible pathological development. Our results offer insights into goose adipogenesis and provide a new perspective for research in human metabolic dysregulation.


Subject(s)
Adipose Tissue/chemistry , Fatty Liver/veterinary , Geese/genetics , Gene Expression Profiling/veterinary , Liver/chemistry , Adipogenesis , Animals , Diet, High-Fat/adverse effects , Diet, High-Fat/veterinary , Energy Metabolism , Evolution, Molecular , Fatty Liver/genetics , Gene Expression Regulation , Genetic Predisposition to Disease , Gluconeogenesis , Lipid Metabolism , Male , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...