Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 418
Filter
1.
Front Pharmacol ; 15: 1405342, 2024.
Article in English | MEDLINE | ID: mdl-38953103

ABSTRACT

Angelica sinensis is a long-standing medicine used by Chinese medical practitioners and well-known for its blood-tonic and blood-activating effects. Ferulic acid, ligustilide, and eugenol in Angelica sinensis activate the blood circulation; however, the material basis of their blood-tonic effects needs to be further investigated. In this study, five homogeneous Angelica sinensis polysaccharides were isolated, and their sugar content, molecular weight, monosaccharide composition, and infrared characteristics determined. Acetylphenylhydrazine (APH) and cyclophosphamide (CTX) were used as inducers to establish a blood deficiency model in mice, and organ indices, haematological and biochemical parameters were measured in mice. Results of in vivo hematopoietic activity showed that Angelica sinensis polysaccharide (APS) could elevate erythropoietin (EPO), granulocyte colony-stimulating factor (G-CSF), and interleukin-3 (IL-3) serum levels, reduce tumor necrosis factor-α (TNF-α) level in mice, and promote hematopoiesis in the body by regulating cytokine levels. Biological potency test results of the in vitro blood supplementation indicated strongest tonic activity for APS-H2O, and APS-0.4 has the weakest haemopoietic activity. The structures of APS-H2O and APS-0.4 were characterized, and the results showed that APS-H2O is an arabinogalactan glycan with a main chain consisting of α-1,3,5-Ara(f), α-1,5- Ara(f), ß-1,4-Gal(p), and ß-1,4-Gal(p)A, and two branched chains of ß-t-Gal(p) and α-t-Glc(p) connected to each other in a (1→3) linkage to α-1,3,5-Ara(f) on the main chain. APS-0.4 is an acidic polysaccharide with galacturonic acid as the main chain, consisting of α-1,4-GalA, α-1,2-GalA, α-1,4-Gal, and ß-1,4-Rha. In conclusion, APS-H2O can be used as a potential drug for blood replenishment in patients with blood deficiency, providing a basis for APS application in clinical treatment and health foods, as well as research and development of new polysaccharide-based drugs.

2.
Adv Sci (Weinh) ; : e2403791, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958509

ABSTRACT

Despite advances in treating osteosarcoma, postoperative tumor recurrence, periprosthetic infection, and critical bone defects remain critical concerns. Herein, the growth of selenium nanoparticles (SeNPs) onto MgFe-LDH nanosheets (LDH) is reported to develop a multifunctional nanocomposite (LDH/Se) and further modification of the nanocomposite on a bioactive glass scaffold (BGS) to obtain a versatile platform (BGS@LDH/Se) for comprehensive postoperative osteosarcoma management. The uniform dispersion of negatively charged SeNPs on the LDH surface restrains toxicity-inducing aggregation and inactivation, thus enhancing superoxide dismutase (SOD) activation and superoxide anion radical (·O2 -)-H2O2 conversion. Meanwhile, Fe3+ within the LDH nanosheets can be reduced to Fe2+ by depleting glutathione (GSH) in the tumor microenvironments (TME), which can catalyze H2O2 into highly toxic reactive oxygen species. More importantly, incorporating SeNPs significantly promotes the anti-bacterial and osteogenic properties of BGS@LDH/Se. Thus, the developed BGS@LDH/Se platform can simultaneously inhibit tumor recurrence and periprosthetic infection as well as promote bone regeneration, thus holding great potential for postoperative "one-stop-shop" management of patients who need osteosarcoma resection and scaffold implantation.

3.
Clin Lab ; 70(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38965969

ABSTRACT

BACKGROUND: This study aimed to understand the clinical characteristics of pulmonary abscess caused by Streptococcus constellatus infection. METHODS: The clinical manifestations, laboratory examination, drug sensitivity, chest CT manifestations, and treatment and prognosis of patients with pulmonary abscess caused by Streptococcus constellatus infection were retrospectively collected and analyzed. RESULTS: A total of 9 cases of pulmonary abscess caused by Streptococcus constellatus infection were confirmed; one case was confirmed by traditional cultures, while metagenomic next-generation sequencing (mNGS) confirmed the other 8 cases. All of the 9 patients had different degrees of cough, sputum, fever, chest pain, and/or dyspnea, and the physical examination showed fast breathing, reduced respiratory sound, or moist rales on the affected side. In laboratory tests, 8 patients had elevated white blood cells and hypoproteinemia upon admission. Blood gas analysis showed an oxygenation index < 300. The antimicrobial susceptibility testing results in 1 patient with culture-confirmed pathogen diagnosis showed that Streptococcus constellatus was susceptible to ampicillin, penicillin G, cefotaxime, ceftriaxone, cefepime, meropenem, chloramphenicol, linezolid, levofloxacin, and vancomycin and resistant to tetracycline and clindamycin. Relevant antibiotic resistance genes were not detected by mNGS in the 8 patients with negative culture and positive mNGS results. A chest CT showed lung consolidation or cavity formation in 9 patients admitted to the hospital, and 5 patients had pleural effusion. 3 cases were admitted to the respiratory intensive care unit (RICU) and 6 cases were admitted to the general ward. There were 3 cases of nasal catheter oxygen inhalation, 1 case of mask oxygen inhalation, and 5 cases of non-invasive ventilator assisted ventilation. All patients received penicillin or respiratory quinolones anti-infection therapy, and 3 cases were treated with a thoracic closed drainage tube. All patients were discharged from the hospital after improvement, and the hospital stay was 15 - 23 days. CONCLUSIONS: Patients with pulmonary abscess caused by Streptococcus constellatus infection have an urgent condition and rapid progression. It is helpful to use mNGS combined with traditional culture as soon as possible to identify the pathogenic bacteria. Penicillin antibiotics should be the first choice for pulmonary abscess caused by a suspected Streptococcus constellatus infection. If a patient´s condition worsens during the treatment, especially for patients who have lesions involving the interlobar fissure or pleura, compressive atelectasis caused by pleural fluid formation or an increase in the amount of pleural effusion needs to be highly suspected.


Subject(s)
Anti-Bacterial Agents , Lung Abscess , Streptococcal Infections , Streptococcus constellatus , Humans , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Streptococcal Infections/drug therapy , Lung Abscess/microbiology , Lung Abscess/diagnosis , Lung Abscess/drug therapy , Streptococcus constellatus/isolation & purification , Male , Middle Aged , Female , Retrospective Studies , Anti-Bacterial Agents/therapeutic use , Aged , Adult , Microbial Sensitivity Tests , Tomography, X-Ray Computed , High-Throughput Nucleotide Sequencing
4.
MedComm (2020) ; 5(7): e574, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948115

ABSTRACT

The etiology of gastrointestinal (GI) diseases is intricate and multifactorial, encompassing complex interactions between genetic predisposition and gut microbiota. The cell fate change, immune function regulation, and microenvironment composition in diseased tissues are governed by microorganisms and mutated genes either independently or through synergistic interactions. A comprehensive understanding of GI disease etiology is imperative for developing precise prevention and treatment strategies. However, the existing models used for studying the microenvironment in GI diseases-whether cancer cell lines or mouse models-exhibit significant limitations, which leads to the prosperity of organoids models. This review first describes the development history of organoids models, followed by a detailed demonstration of organoids application from bench to clinic. As for bench utilization, we present a layer-by-layer elucidation of organoid simulation on host-microbial interactions, as well as the application in molecular mechanism analysis. As for clinical adhibition, we provide a generalized interpretation of organoid application in GI disease simulation from inflammatory disorders to malignancy diseases, as well as in GI disease treatment including drug screening, immunotherapy, and microbial-targeting and screening treatment. This review draws a comprehensive and systematical depiction of organoids models, providing a novel insight into the utilization of organoids models from bench to clinic.

5.
Int J Womens Health ; 16: 1127-1135, 2024.
Article in English | MEDLINE | ID: mdl-38912202

ABSTRACT

Purpose: To explore the risk and protective factors for developing ovarian cancer and construct a risk prediction model. Methods: Information related to patients diagnosed with ovarian cancer on the electronic medical record data platform of three tertiary hospitals in Guangdong Province from May 2018 to September 2023 was collected as the case group. Patients with non-ovarian cancer who attended the clinic during the same period were included in the control group. Logistic regression analysis was used to screen the independent variables and explore the factors associated with the development of ovarian cancer. An ovarian cancer risk prediction model was constructed using a decision tree C4.5 algorithm. The ROC and calibration curves were plotted, and the model was validated. Results: Logistic regression analysis identified independent risk and protective factors for ovarian cancer. The sample size was divided into training and test sets in a ratio of 7:3 for model construction and validation. The AUC of the training and test sets of the decision tree model were 0.961 (95% CI:0.944-0.978) and 0.902 (95% CI:0.840-0.964), respectively, and the optimal cut-off values and their coordinates were 0.532 (0.091, 0.957), and 0.474 (0.159, 0.842) respectively. The accuracies of the training and test sets were 93.3% and 84.2%, respectively, and their sensitivities were 95.7% and 84.2%, respectively. Conclusion: The constructed ovarian cancer risk prediction model has good predictive ability, which is conducive to improving the efficiency of early warning of ovarian cancer in high-risk groups.

6.
J Biopharm Stat ; : 1-19, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889012

ABSTRACT

BACKGROUND: Positive and negative likelihood ratios (PLR and NLR) are important metrics of accuracy for diagnostic devices with a binary output. However, the properties of Bayesian and frequentist interval estimators of PLR/NLR have not been extensively studied and compared. In this study, we explore the potential use of the Bayesian method for interval estimation of PLR/NLR, and, more broadly, for interval estimation of the ratio of two independent proportions. METHODS: We develop a Bayesian-based approach for interval estimation of PLR/NLR for use as a part of a diagnostic device performance evaluation. Our approach is applicable to a broader setting for interval estimation of any ratio of two independent proportions. We compare score and Bayesian interval estimators for the ratio of two proportions in terms of the coverage probability (CP) and expected interval width (EW) via extensive experiments and applications to two case studies. A supplementary experiment was also conducted to assess the performance of the proposed exact Bayesian method under different priors. RESULTS: Our experimental results show that the overall mean CP for Bayesian interval estimation is consistent with that for the score method (0.950 vs. 0.952), and the overall mean EW for Bayesian is shorter than that for score method (15.929 vs. 19.724). Application to two case studies showed that the intervals estimated using the Bayesian and frequentist approaches are very similar. DISCUSSION: Our numerical results indicate that the proposed Bayesian approach has a comparable CP performance with the score method while yielding higher precision (i.e. a shorter EW).

7.
Front Psychol ; 15: 1385612, 2024.
Article in English | MEDLINE | ID: mdl-38882519

ABSTRACT

Introduction: The intersection of work-family dynamics and job contentment has become a pivotal area of investigation within the higher education landscape, drawing scholarly attention, especially in the Chinese context. This study delves into the intricate relationship between work-family culture and job satisfaction, with a particular spotlight on the mediating influence of perceptions of organizational fairness. The impetus behind this emphasis lies in the burgeoning acknowledgment of organizational justice as a pivotal force shaping employee attitudes and conduct within academic establishments. Method: This research was conducted using two distinct groups. The first group consisted of 1,075 faculty members at Chinese universities, while the second group comprised 972 administrative and technical employees at these institutions. Results: The mediational analyses provided in this study offer an enhanced comprehension of the intricate relationships under discussion. Significantly, the findings reveal that Work-Family Culture plays a crucial predictive role in influencing perceptions of Organizational Justice among both faculty and administrative staff. More importantly, the study uncovers that Work-Family Culture indirectly affects Job Satisfaction through its impact on Organizational Justice. Discussion: This insight underscores the importance of harmonious work-family interactions as a determinant of job-related attitudes and satisfaction levels.

8.
J Nanobiotechnology ; 22(1): 317, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849886

ABSTRACT

Sonodynamic therapy (SDT), a promising strategy for cancer treatment with the ability for deep tissue penetration, has received widespread attention in recent years. Sonosensitizers with intrinsic characteristics for tumor-specific curative effects, tumor microenvironment (TME) regulation and tumor diagnosis are in high demand. Herein, amorphous CoBiMn-layered double hydroxide (a-CoBiMn-LDH) nanoparticles are presented as multifunctional sonosensitizers to trigger reactive oxygen species (ROS) generation for ultrasound (US) imaging-guided SDT. Hydrothermal-synthesized CoBiMn-LDH nanoparticles are etched via a simple acid treatment to obtain a-CoBiMn-LDH nanoparticles with abundant defects. The a-CoBiMn-LDH nanoparticles give greater ROS generation upon US irradiation, reaching levels ~ 3.3 times and ~ 8.2 times those of the crystalline CoBiMn-LDH nanoparticles and commercial TiO2 sonosensitizer, respectively. This excellent US-triggered ROS generation performance can be attributed to the defect-induced narrow band gap and promoted electrons and holes (e-/h+) separation. More importantly, the presence of Mn4+ enables the a-CoBiMn-LDH nanoparticles to regulate the TME by decomposing H2O2 into O2 for hypoxia relief and US imaging, and consuming glutathione (GSH) for protection against ROS clearance. Biological mechanism analysis shows that a-CoBiMn-LDH nanoparticles modified with polyethylene glycol can serve as a multifunctional sonosensitizer to effectively kill cancer cells in vitro and eliminate tumors in vivo under US irradiation by activating p53, apoptosis, and oxidative phosphorylation-related signaling pathways.


Subject(s)
Hydroxides , Nanoparticles , Reactive Oxygen Species , Tumor Microenvironment , Ultrasonic Therapy , Tumor Microenvironment/drug effects , Animals , Reactive Oxygen Species/metabolism , Humans , Ultrasonic Therapy/methods , Hydroxides/chemistry , Hydroxides/pharmacology , Mice , Nanoparticles/chemistry , Cell Line, Tumor , Cobalt/chemistry , Ultrasonography/methods , Mice, Inbred BALB C , Neoplasms/therapy , Neoplasms/diagnostic imaging , Apoptosis/drug effects , Female , Mice, Nude
9.
Ecotoxicol Environ Saf ; 280: 116520, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833985

ABSTRACT

Early studies have shown that the gut microbiota is a critical target during cadmium exposure. The prebiotic activity of epigallocatechin-3-gallate (EGCG) plays an essential role in treating intestinal inflammation and damage. However, the exact intestinal barrier protection mechanism of EGCG against cadmium exposure remains unclear. In this experiment, four-week-old mice were exposed to cadmium (5 mg kg-1) for four weeks. Through 16 S rDNA analysis, we found that cadmium disrupted the gut microbiota and inhibited the indole metabolism pathway of tryptophan (TRP), which serves as the principal microbial production route for endogenous ligands to activate the aryl hydrocarbon receptor (AhR). Additionally, cadmium downregulated the intestinal AhR signaling pathway and harmed the intestinal barrier function. Treatment with EGCG (20 mg kg-1) and the AhR agonist 6-Formylindolo[3,2-b] carbazole (FICZ) (1 µg/d) significantly activated the AhR pathway and alleviated intestinal barrier injury. Notably, EGCG partially restored the gut microbiota and upregulated the TRP-indole metabolism pathway to increase the level of indole-related AhR agonists. Our findings demonstrate that cadmium dysregulates common gut microbiota to disrupt TRP metabolism, impairing the AhR signaling pathway and intestinal barrier. EGCG reduces cadmium-induced intestinal functional impairment by intervening in the intestinal microbiota to metabolize AhR agonists. This study offers insights into the toxic mechanisms of environmental cadmium and a potential mechanism to protect the intestinal barrier with EGCG.


Subject(s)
Cadmium , Catechin , Gastrointestinal Microbiome , Receptors, Aryl Hydrocarbon , Signal Transduction , Tryptophan , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Gastrointestinal Microbiome/drug effects , Mice , Tryptophan/metabolism , Tryptophan/analogs & derivatives , Cadmium/toxicity , Signal Transduction/drug effects , Male , Intestines/drug effects , Intestines/pathology , Mice, Inbred C57BL , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Indoles/pharmacology , Carbazoles/pharmacology
10.
Int Immunopharmacol ; 138: 112513, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917520

ABSTRACT

In specific pathological conditions, addressing liver injury may yield favorable effects on renal function through the phenomenon of liver-kidney crosstalk. Mitochondrial DNA (mtDNA) possesses the capability to trigger downstream pathways of inflammatory cytokines, ultimately leading to immune-mediated organ damage. Consequently, understanding the intricate molecular mechanisms governing mtDNA involvement in diseases characterized by liver-kidney crosstalk is of paramount significance. This study seeks to elucidate the role of mtDNA in conditions marked by liver-kidney crosstalk. In previous clinical cases, it has been observed that patients with Trichloroethylene Hypersensitivity Syndrome (TCE-HS) who experience severe liver injury often also exhibit renal injury. In this study, patients diagnosed with trichloroethylene hypersensitivity syndrome were recruited from Shenzhen Occupational Disease Control Center. And Balb/c mice were treated with trichloroethylene. The correlation between liver and kidney injuries in patients with TCE-HS was assessed using Enzyme-Linked Immunosorbent Assay (ELISA). Alterations in mtDNA levels were examined in mouse hepatocytes, red blood cells (RBCs), and renal tubular epithelial cells utilizing immunofluorescence and PCR techniques. TCE-sensitized mice exhibited a significant increase in reactive oxygen species (ROS) and the opening of the mitochondrial permeability transition pore in hepatocytes, resulting in the release of mtDNA. Furthermore, heightened levels of mtDNA and Toll-like Receptor 9 (TLR9) expression were observed in RBCs. Additional experiments demonstrated elevated expression of TLR9 and its downstream mediator MyD88 in renal tubule epithelial cells of TCE-sensitized mice. In vitro investigations confirmed that mtDNA activates the TLR9 pathway in TCMK-1 cells. Collectively, these results suggest that mtDNA released from mitochondrial damage in hepatocytes is carried by RBCs to renal tubular epithelial cells and mediates inflammatory injury in renal tubular epithelial cells through activation of the TLR9 receptor.

11.
Adv Sci (Weinh) ; : e2401064, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708711

ABSTRACT

Sonodynamic therapy (SDT) is demonstrated to trigger the systemic immune response of the organism and facilitate the treatment of metastatic tumors. However, SDT-mediated neutrophil extracellular traps (NETs) formation can promote tumor cell spread, thus weakening the therapeutic effectiveness of metastatic tumors. Herein, the amorphous CoW-layered double hydroxide (a-CoW-LDH) nanosheets are functionalized with a peptidyl arginine deiminase 4 (PAD4) inhibitor, i.e., YW3-56, to construct a multifunctional nanoagent (a-LDH@356) for synergistic SDT/immunotherapy. Specifically, a-CoW-LDH nanosheets can act as a sonosensitizer to generate abundant reactive oxygen species (ROS) under US irradiation. After loading with YW3-56, a-LDH@356 plus US irradiation not only effectively induces ROS generation and immunogenic cell death, but also inhibits the elevation of citrullinated histone H3 (H3cit) and the release of NETs, enabling a synergistic enhancement of anti-tumor metastasis effect. Using 4T1 tumor model, it is demonstrated that combining a-CoW-LDH with YW3-56 stimulates an anti-tumor response by upregulating the proportion of immune-activated cells and inducing polarization of M1 macrophages, and inhibits immune escape by downregulating the expression of PD-1 on immune cells under US irradiation, which not only arrests primary tumor progression with a tumor inhibition rate of 69.5% but also prevents tumor metastasis with the least number of lung metastatic nodules.

12.
Biomed Eng Online ; 23(1): 44, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705993

ABSTRACT

BACKGROUND: Osteocytes are critical mechanosensory cells in bone, and mechanically stimulated osteocytes produce exosomes that can induce osteogenesis. MicroRNAs (miRNAs) are important constituents of exosomes, and some miRNAs in osteocytes regulate osteogenic differentiation; previous studies have indicated that some differentially expressed miRNAs in mechanically strained osteocytes likely influence osteoblastic differentiation. Therefore, screening and selection of miRNAs that regulate osteogenic differentiation in exosomes of mechanically stimulated osteocytes are important. RESULTS: A mechanical tensile strain of 2500 µÎµ at 0.5 Hz 1 h per day for 3 days, elevated prostaglandin E2 (PGE2) and insulin-like growth factor-1 (IGF-1) levels and nitric oxide synthase (NOS) activity of MLO-Y4 osteocytes, and promoted osteogenic differentiation of MC3T3-E1 osteoblasts. Fourteen miRNAs differentially expressed only in MLO-Y4 osteocytes which were stimulated with mechanical tensile strain, were screened, and the miRNAs related to osteogenesis were identified. Four differentially expressed miRNAs (miR-1930-3p, miR-3110-5p, miR-3090-3p, and miR-3058-3p) were found only in mechanically strained osteocytes, and the four miRNAs, eight targeted mRNAs which were differentially expressed only in mechanically strained osteoblasts, were also identified. In addition, the mechanically strained osteocyte-derived exosomes promoted the osteoblastic differentiation of MC3T3-E1 cells in vitro, the exosomes were internalized by osteoblasts, and the up-regulated miR-3110-5p and miR-3058-3p in mechanically strained osteocytes, were both increased in the exosomes, which was verified via reverse transcription quantitative polymerase chain reaction (RT-qPCR). CONCLUSIONS: In osteocytes, a mechanical tensile strain of 2500 µÎµ at 0.5 Hz induced the fourteen differentially expressed miRNAs which probably were in exosomes of osteocytes and involved in osteogenesis. The mechanically strained osteocyte-derived exosomes which contained increased miR-3110-5p and miR-3058-3p (two of the 14 miRNAs), promoted osteoblastic differentiation.


Subject(s)
Exosomes , MicroRNAs , Osteocytes , Osteogenesis , Stress, Mechanical , Animals , Mice , Cell Line , Exosomes/metabolism , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocytes/cytology , Osteocytes/metabolism , Osteogenesis/genetics
13.
Article in English | MEDLINE | ID: mdl-38729031

ABSTRACT

Water temperature is a crucial environmental factor that significantly affects the physiological and biochemical processes of fish. Due to the occurrence of cold events in aquaculture, it is imperative to investigate how fish respond to cold stress. This study aims to uncover the mechanisms responds to acute cold stress by conducting a comprehensive analysis of the histomorphology, glycolipid metabolic and antioxidant enzymes, fatty acid composition and transcriptome at three temperatures (16 °C, 10 °C and 4 °C) in Phoxinus lagowskii. Our results showed that cold stress not damaged muscle microstructure but caused autophagy (at 10 °C). In addition, serum glucose (Glu) and triglycerides (TG) increased during cold stress. The activities of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), fructose phosphokinase (PFK), hexokinase (HK), pyruvate kinase (PK), and malondialdehyde (MDA) content in muscle were measured and analyzed. During cold stress, superoxide dismutase and catalase activities increased, reactive oxygen species content decreased. No significant difference in Glutathione peroxidase (GPx) activity, malondialdehyde and total cholesterol (T-CHO) contents among groups. Phosphokinase and pyruvate kinase activities decreased, and HK activity increased during cold stress. Our study resulted in the identification of a total of 25,400 genes, with 2524 genes showing differential expression across different temperature treatments. Furthermore, KEGG pathway indicated that some pathways upregulated during light cold stress (at 10 °C, including autophagy, and AMP-activated protein kinase (AMPK) signaling pathway. Additionally, circadian rhythm is among the most enriched pathways in genes up-regulated during severe cold stress (at 4 °C). Our findings offer valuable insights into how cold-water fish respond to cold stress.


Subject(s)
Antioxidants , Cold-Shock Response , Cyprinidae , Fatty Acids , Glycolipids , Animals , Cyprinidae/genetics , Cyprinidae/physiology , Cyprinidae/metabolism , Fatty Acids/metabolism , Antioxidants/metabolism , Glycolipids/metabolism , Transcriptome , Gene Expression Profiling
14.
J Med Imaging (Bellingham) ; 11(2): 024504, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38576536

ABSTRACT

Purpose: The Medical Imaging and Data Resource Center (MIDRC) was created to facilitate medical imaging machine learning (ML) research for tasks including early detection, diagnosis, prognosis, and assessment of treatment response related to the coronavirus disease 2019 pandemic and beyond. The purpose of this work was to create a publicly available metrology resource to assist researchers in evaluating the performance of their medical image analysis ML algorithms. Approach: An interactive decision tree, called MIDRC-MetricTree, has been developed, organized by the type of task that the ML algorithm was trained to perform. The criteria for this decision tree were that (1) users can select information such as the type of task, the nature of the reference standard, and the type of the algorithm output and (2) based on the user input, recommendations are provided regarding appropriate performance evaluation approaches and metrics, including literature references and, when possible, links to publicly available software/code as well as short tutorial videos. Results: Five types of tasks were identified for the decision tree: (a) classification, (b) detection/localization, (c) segmentation, (d) time-to-event (TTE) analysis, and (e) estimation. As an example, the classification branch of the decision tree includes two-class (binary) and multiclass classification tasks and provides suggestions for methods, metrics, software/code recommendations, and literature references for situations where the algorithm produces either binary or non-binary (e.g., continuous) output and for reference standards with negligible or non-negligible variability and unreliability. Conclusions: The publicly available decision tree is a resource to assist researchers in conducting task-specific performance evaluations, including classification, detection/localization, segmentation, TTE, and estimation tasks.

15.
Eur J Oncol Nurs ; 70: 102570, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574419

ABSTRACT

PURPOSE: Following treatment completion, colorectal cancer (CRC) survivors experience various unmet needs. This review aims to synthesize the unmet needs of CRC survivors after treatment and to identify demographic, disease or treatment-related, healthcare-related, and psychosocial factors correlated with unmet needs. METHOD: English or Chinese articles that focused on CRC survivors' post-treatment unmet needs were systematically searched from the five electronic databases, which included CINAHL, PubMed, Embase, PsycINFO, and the China Academic Journal Full-text Database, from the launch of databases to July 2023. The reference lists of the subsequent articles were further screened. RESULTS: 136 individual needs extracted from 50 manuscripts were classified into nine domains based on the Supportive Care Framework. The top four unmet needs identified by CRC survivors were assistance with fears of cancer recurrence, information about managing illness and side effects at home, emotional or psychological support and reassurance, and help with sexuality problems. Following surgery, CRC survivors showed strong demand in the physical, psychological, and information domains. Survivors completed treatment within 1-year had more diverse needs than those who completed 1-3 years. Unmet needs may be greater among CRC survivors who were young, female, more educated, and unmarried. Furthermore, greater unmet needs were associated with distress, anxiety, depression, and worse quality of life. CONCLUSIONS: Despite diverse needs experienced by post-treatment CRC survivors, a predominant focus on fears of cancer recurrence, information, psychological support, and sexuality needs is noted. Future studies should further explore the needs of CRC survivors after specific treatment and in different post-treatment periods.


Subject(s)
Cancer Survivors , Colorectal Neoplasms , Needs Assessment , Humans , Colorectal Neoplasms/therapy , Colorectal Neoplasms/psychology , Cancer Survivors/psychology , Health Services Needs and Demand , Female , Male , Quality of Life
16.
Environ Sci Technol ; 58(18): 8053-8064, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38662987

ABSTRACT

The aggregation behavior of ubiquitous dissolved black carbon (DBC) largely affects the fate and transport of its own contaminants and the attached contaminants. However, the photoaging processes and resulting effects on its colloidal stability remain yet unknown. Herein, dissolved biochars (DBioCs) were extracted from common wheat straw biochar as a proxy for an anthropogenic DBC. The influences of UV radiation on their aggregation kinetics were systematically investigated under various water chemistries (pH, electrolytes, and protein). The environmental stability of the DBioCs before and after radiation was further verified in two natural water samples. Hamaker constants of pristine and photoaged DBioCs were derived according to Derjaguin-Landau-Verwey-Overbeek (DLVO) prediction, and its attenuation (3.19 ± 0.15 × 10-21 J to 1.55 ± 0.07 × 10-21 J after 7 days of radiation) was described with decay kinetic models. Pearson correlation analysis revealed that the surface properties and aggregation behaviors of DBioCs were significantly correlated with radiation time (p < 0.05), indicating its profound effects. Based on characterization and experimental results, we proposed a three-stage mechanism (contended by photodecarboxylation, photo-oxidation, and mineral exposure) that DBioCs might experience under UV radiation. These findings would provide an important reference for potential phototransformation processes and relevant behavioral changes that DBC may encounter.


Subject(s)
Ultraviolet Rays , Water/chemistry , Charcoal/chemistry , Kinetics , Water Pollutants, Chemical/chemistry
17.
Langmuir ; 40(17): 9082-9096, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38619979

ABSTRACT

Great efforts have been devoted to the development of novel and multifunctional wound dressing materials to meet the different needs of wound healing. Herein, we covalently grafted quaternary ammonium groups (QAGs) containing 12-carbon straight-chain alkanes to the dextran polymer skeleton. We then oxidized the resulting product into oxidized quaternized dextran (OQD). The obtained OQD polymer is rich in antibacterial QAGs and aldehyde groups. It can react with glycol chitosan (GC) via the Schiff-base reaction to form a multifunctional GC@OQD hydrogel with good self-healing behavior, hemostasis, injectability, inherent superior antibacterial activity, biocompatibility, and excellent promotion of healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds. The biosafe and nontoxic GC@OQD hydrogel with a three-dimensional porous network structure possesses an excellent swelling rate and water retention capacity. It can be used for hemostasis and treating irregular wounds. The designed GC@OQD hydrogel with inherent antibacterial activity possesses good antibacterial efficacy on both S. aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria), as well as MRSA bacteria, with antibacterial activity greater than 99%. It can be used for the treatment of wounds infected by MRSA and significantly promotes the healing of wounds. Thus, the multifunctional antibacterial GC@OQD hydrogel has the potential to be applied in clinical practice as a wound dressing.


Subject(s)
Anti-Bacterial Agents , Chitosan , Escherichia coli , Hydrogels , Methicillin-Resistant Staphylococcus aureus , Wound Healing , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Animals , Chitosan/chemistry , Chitosan/pharmacology , Dextrans/chemistry , Dextrans/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Mice , Polysaccharides/chemistry , Polysaccharides/pharmacology
18.
Lipids Health Dis ; 23(1): 85, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515137

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) is a prevalent hereditary disease that can cause aberrant cholesterol metabolism. In this study, we confirmed that c.415G > A in low-density lipoprotein receptor (LDLR), an FH-related gene, is a pathogenic variant in FH by in silico analysis and functional experiments. METHODS: The proband and his family were evaluated using the diagnostic criteria of the Dutch Lipid Clinic Network. Whole-exome and Sanger sequencing were used to explore and validate FH-related variants. In silico analyses were used to evaluate the pathogenicity of the candidate variant and its impact on protein stability. Molecular and biochemical methods were performed to examine the effects of the LDLR c.415G > A variant in vitro. RESULTS: Four of six participants had a diagnosis of FH. It was estimated that the LDLR c.415G > A variant in this family was likely pathogenic. Western blotting and qPCR suggested that LDLR c.415G > A does not affect protein expression. Functional studies showed that this variant may lead to dyslipidemia by impairing the binding and absorption of LDLR to low-density lipoprotein ( LDL). CONCLUSION: LDLR c.415G > A is a pathogenic variant in FH; it causes a significant reduction in LDLR's capacity to bind LDL, resulting in impaired LDL uptake. These findings expand the spectrum of variants associated with FH.


Subject(s)
Hyperlipoproteinemia Type II , Humans , Phenotype , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/diagnosis , Receptors, LDL/genetics , Receptors, LDL/metabolism , Lipoproteins, LDL/genetics , Mutation , Proprotein Convertase 9/genetics
19.
Aging (Albany NY) ; 16(5): 4811-4831, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38460944

ABSTRACT

Inhibitors of Epidermal growth factor receptor tyrosine kinase (EGFR-TKIs) are producing impressive benefits to responsive types of cancers but challenged with drug resistances. FHND drugs are newly modified small molecule inhibitors based on the third-generation EGFR-TKI AZD9291 (Osimertinib) that are mainly for targeting the mutant-selective EGFR, particularly for the non-small cell lung cancer (NSCLC). Successful applications of EGFR-TKIs to other cancers are less certain, thus the present pre-clinical study aims to explore the anticancer effect and downstream targets of FHND in multiple myeloma (MM), which is an incurable hematological malignancy and reported to be insensitive to first/second generation EGFR-TKIs (Gefitinib/Afatinib). Cell-based assays revealed that FHND004 and FHND008 significantly inhibited MM cell proliferation and promoted apoptosis. The RNA-seq identified the involvement of the MAPK signaling pathway. The protein chip screened PDZ-binding kinase (PBK) as a potential drug target. The interaction between PBK and FHND004 was verified by molecular docking and microscale thermophoresis (MST) assay with site mutation (N124/D125). Moreover, the public clinical datasets showed high expression of PBK was associated with poor clinical outcomes. PBK overexpression evidently promoted the proliferation of two MM cell lines, whereas the FHND004 treatment significantly inhibited survival of 5TMM3VT cell-derived model mice and growth of patient-derived xenograft (PDX) tumors. The mechanistic study showed that FHND004 downregulated PBK expression, thus mediating ERK1/2 phosphorylation in the MAPK pathway. Our study not only demonstrates PBK as a promising novel target of FHND004 to inhibit MM cell proliferation, but also expands the EGFR kinase-independent direction for developing anti-myeloma therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mitogen-Activated Protein Kinase Kinases , Multiple Myeloma , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Molecular Docking Simulation , Drug Resistance, Neoplasm/genetics , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Cell Proliferation , Mutation
20.
J Nanobiotechnology ; 22(1): 127, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520008

ABSTRACT

The rapid proliferation of tumors is highly dependent on the nutrition supply of blood vessels. Cutting off the nutrient supply to tumors is an effective strategy for cancer treatment, known as starvation therapy. Although various hydrogel-based biomaterials have been developed for starvation therapy through glucose consumption or intravascular embolization, the limitations of single-mode starvation therapy hinder their therapeutic effects. Herein, we propose a dual-function nutrition deprivation strategy that can block the nutrients delivery through extravascular gelation shrinkage and inhibit neovascularization through angiogenesis inhibitors based on a novel NIR-responsive nanocomposite hydrogel. CuS nanodots-modified MgAl-LDH nanosheets loaded with angiogenesis inhibitor (sorafenib, SOR) are incorporated into the poly(n-isopropylacrylamide) (PNIPAAm) hydrogel by radical polymerization to obtain the composite hydrogel (SOR@LDH-CuS/P). The SOR@LDH-CuS/P hydrogel can deliver hydrophobic SOR with a NIR-responsive release behavior, which could decrease the tumor vascular density and accelerate cancer cells apoptosis. Moreover, the SOR@LDH-CuS/P hydrogel exhibits higher (3.5 times) compressive strength than that of the PNIPAAm, which could squeeze blood vessels through extravascular gelation shrinkage. In vitro and in vivo assays demonstrate that the interruption of nutrient supply by gelation shrinkage and the prevention of angiogenesis by SOR is a promising strategy to inhibit tumor growth for multimode starvation therapy.


Subject(s)
Hydrogels , Neoplasms , Humans , Hydrogels/chemistry , Angiogenesis Inhibitors/pharmacology , Angiogenesis , Drug Delivery Systems , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...