Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 308
Filter
1.
J Orthop Surg Res ; 19(1): 611, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342292

ABSTRACT

BACKGROUND: Shear Wave Elastography (SWE) offers quantitative insights into the hardness and elasticity characteristics of tissues. The objective of this study is to investigate the correlation between SWE of the menisci and MRI-assessed degenerative changes in the menisci, with the aim of providing novel reference source for improving non-invasive evaluation of meniscal degenerative alterations. METHODS: The participants in this study were selected from patients who underwent knee joint MRI scans at our hospital from February 2023 to February 2024. The anterior horns of both the medial and lateral menisci were evaluated using SWE technique. The differences in elastic values of meniscus among different MRI grades were compared. The correlation between elastic values and MRI grades, as well as various parameters, was analyzed. Using MRI Grade 3 as the gold standard, the optimal cutoff value for meniscal tear was determined. The intraclass correlation coefficient (ICC) was employed to evaluate the reliability of repeated measurements performed by the same observer. RESULTS: A total of 104 female participants were enrolled in this study, with 152 lateral menisci (LM) and 144 medial menisci (MM) assessed. For the male group, 83 individuals were included, with 147 LM and 145 MM evaluated. The results demonstrated statistically significant differences in the elasticity values of the menisci at the same anatomical sites across different MRI grades (P < 0.001). Within the same grade, the MM had higher elasticity values than the LM, showing a statistically significant difference (P < 0.001). The elasticity values of the menisci were higher in males compared to females. There were statistically significant positive correlations between the elasticity values of the menisci and age, BMI, and MRI grade. The ICC for repeated measurements within the observer demonstrated good reliability (> 0.79). CONCLUSIONS: The meniscal elasticity values measured by SWE exhibit a significant positive correlation with the grades of degeneration assessed by MRI. Furthermore, the elasticity values of the meniscus are found to increase with advancing age and elevated BMI.


Subject(s)
Elasticity Imaging Techniques , Magnetic Resonance Imaging , Menisci, Tibial , Humans , Elasticity Imaging Techniques/methods , Female , Magnetic Resonance Imaging/methods , Male , Middle Aged , Adult , Menisci, Tibial/diagnostic imaging , Menisci, Tibial/pathology , Aged , Reproducibility of Results , Young Adult , Tibial Meniscus Injuries/diagnostic imaging , Elasticity
2.
World J Gastrointest Surg ; 16(8): 2484-2493, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39220065

ABSTRACT

BACKGROUND: Gastric cancer remains a leading cause of cancer-related mortality globally. Traditional open surgery for gastric cancer is often associated with significant morbidity and prolonged recovery. AIM: To evaluate the effectiveness of laparoscopic minimally invasive surgery as an alternative to traditional open surgery for gastric cancer, focusing on its potential to reduce trauma, accelerate recovery, and achieve comparable oncological outcomes. METHODS: This study retrospectively analyzed 203 patients with gastric cancer who underwent surgery at the Shanghai Health Medical College Affiliated Chongming Hospital from January 2020 to December 2023. The patients were divided into two groups: Minimally invasive surgery group (n = 102), who underwent laparoscopic gastrectomy, and open surgery group (n = 101), who underwent traditional open gastrectomy. We compared surgical indicators (surgical incision size, intraoperative blood loss, surgical duration, and number of lymph nodes dissected), recovery parameters (time to first flatus, time to start eating, time to ambulation, and length of hospital stay), immune function (levels of IgA, IgG, and IgM), intestinal barrier function (levels of D-lactic acid and diamine oxidase), and stress response (levels of C-reactive protein, interleukin-6, and procalcitonin). RESULTS: The minimally invasive surgery group demonstrated significantly better outcomes in terms of surgical indicators, including smaller incisions, less blood loss, shorter surgery time, and more lymph nodes dissected (P < 0.05 for all). Recovery was also faster in the minimally invasive surgery group, with earlier return of bowel function, earlier initiation of diet, quicker mobilization, and shorter hospital stays (P < 0.05 for all). Furthermore, patients in the minimally invasive surgery group had better preserved immune function, superior intestinal barrier function, and a less pronounced stress response postoperatively (P < 0.05 for all). CONCLUSION: Laparoscopic minimally invasive surgery for gastric cancer not only provides superior surgical indicators and faster recovery but also offers advantages in preserving immune function, protecting intestinal barrier function, and mitigating the stress response compared to traditional open surgery. These findings support the broader adoption of laparoscopic techniques in the management of gastric cancer.

3.
Front Microbiol ; 15: 1431954, 2024.
Article in English | MEDLINE | ID: mdl-39234552

ABSTRACT

Background: Xiaojin Pill (XJP) is a traditional Chinese medicine prescribed for treating benign prostatic hyperplasia (BPH). It has been proven to have multiple effects, such as regulating sex hormone levels, exhibiting anti-tumor, anti-inflammatory, analgesic, and anti-platelet aggregation properties, and improving immunity. However, the material basis of XJP's therapeutic effect on BPH and its metabolic process in vivo remains to be clarified. At the same time, many microorganisms that exist in the urogenital tract, including those related to BPH, can also affect the health of the host. Methods: Using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the chemical components of XJP were identified. A BPH model was created through bilateral testicular ablation and injections of testosterone propionate. A comprehensive evaluation of XJP efficacy was conducted using pathological ELISA, TUNEL, and immunohistochemical techniques. In addition, UPLC-MS metabolomics and 16S rRNA sequencing revealed the serum metabolic profile and intestinal microbiota composition. We performed a Spearman correlation coefficient analysis to highlight the interactions between "intestinal microbiota-serum factors" and "intestinal microbiota-metabolites." Results: XJP contains 91 compounds that alleviate pathologies of BPH in rats, decreasing prostate weight, index, and serum levels of Dihydrotestosterone (DHT), Prostate-Specific Antigen (PSA), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) levels. It inhibits prostatic epithelial cell apoptosis and downregulates Bax, TGF-ß1, and IGF-1 proteins in the caspase-3 pathway. Metabolomics studies have revealed 10 upregulated and 10 downregulated metabolites in treated rats, with 5-methylcytosine, uracil, and cytosine enriched in pyrimidine metabolism. L-arginine plays a pivotal role in metabolic pathways encompassing pyrimidine metabolism, arginine biosynthesis, and the mammalian target of rapamycin (mTOR) signaling pathway. 16S rRNA sequencing revealed that XJP optimized the diversity and balance of intestinal flora in BPH rats by decreasing the Bacteroidetes/Firmicutes (B/F) ratio, enhancing the beneficial bacteria, such as Eggerthellaceae, Anaerovoracaceae, and Romboutsia, and suppressing the dysfunctional bacteria, such as Atopobiaceae, Prevotellaceae_NK3B31_group, Dorea, and Frisingicoccus. According to the Spearman correlation coefficient analysis, Lactobacillus was found to be most associated with serum factors, whereas Romboutsia showed the highest correlation with metabolites. This finding suggests that XJP modulates pyrimidine metabolism disorders in BPH rats, a regulation that aligns closely with Romboutsia, Prevotellaceae_NK3B31_group, Lactobacillus, Chujaibacter, and Enterorhabdus, thereby providing valuable biological insights. Conclusion: In summary, these findings indicate that XJP possesses a synergistic anti-BHP effect through its multi-component, multi-target, multi-gut microbiota, and multi-metabolic pathway properties. The effect involves the regulation of sex hormone levels, growth factors, and the anti-epithelial cell apoptosis process. The modulation of specific gut microbiota by the host and the involvement of multiple metabolic pathways are likely one of the significant mechanisms of XJP in treating BPH. Notably, pyrimidine metabolism and the intestinal microbial ecosystem are closely intertwined in this process.

4.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3971-3976, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099370

ABSTRACT

The development of traditional Chinese medicine(TCM) preparations as an incubator for new drugs in medical institutions has flourished, while an evaluation index system remains to be established for comprehensively assessing the development value of these prescriptions. This study established an item pool through literature research, employed the Delphi method to determine the content of evaluation indexes, and adopted the superiority chart to determine the weight of each index. Two-level evaluation index system for the development value of TCM preparations in medical institutions was established, which included 7 first-level items and 36 se-cond-level items, demonstrating scientific validity. The first-level items(weight) were inheritance(10.61%), effectiveness(23.22%), safety(22.71%), innovation(13.21%), economy(10.00%), suitability(8.57%), and accessibility(11.68%). The top three second-level items in terms of weight distribution were adverse reaction monitoring(6.73%), evidence of therapeutic effect(5.71%), and clinical response rate(4.75%). The bottom three second-level items were production advantages(0.86%), medicinal dosage(0.48%), and medicinal smell or taste(0.18%). The content validity of the established system was assessed, which revealed that the index system was reliable, with the overall and average content validity indexes of 0.47 and 0.90, respectively. Furthermore, the established evaluation index system was used to evaluate six TCM preparations in a city-level hospital of TCM in Sichuan Province, which demonstrated that the system had operability. The results indicate that the evaluation index system is scientific, reliable, and operable, providing a reference for developers to selectively develop TCM preparations in medical institutions. In practical application, the system can be adjusted regarding the index weights according to actual conditions.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Medicine, Chinese Traditional/standards , Drugs, Chinese Herbal/standards , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Humans
5.
Adv Sci (Weinh) ; : e2401420, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162002

ABSTRACT

As nitrogen analogues of iron-oxo species, high-valent iron-imido species have attracted great interest in the past decades. FeV-alkylimido species are generally considered to be key reaction intermediates in Fe(III)-catalyzed C(sp3)─H bond aminations of alkyl azides but remain underexplored. Here, it is reported that iron-corrole (Cor) complexes can catalyze a wide range of intramolecular C─H amination reactions of alkyl azides to afford a variety of 5-, 6- and 7-membered N-heterocycles, including alkaloids and natural product derivatives, with up to 3880 turnover numbers (TONs) and excellent diastereoselectivity (>99:1 d.r.). Mechanistic studies including density functional theory (DFT) calculations and intermolecular hydrogen atom abstraction (HAA) reactions reveal key reactive FeV-alkylimido intermediates. The [FeV(Cor)(NAd)] (Ad = adamantyl) complex is independently prepared and characterized through electron paramagnetic resonance (EPR), resonance Raman (rR) measurement, and X-ray photoelectron spectroscopy (XPS). This complex is reactive toward HAA reactions with kinetic isotope effects (KIEs) similar to [Fe(Cor)]-catalyzed intramolecular C─H amination of alkyl azides.

6.
Mater Horiz ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143942

ABSTRACT

Power dissipation, a fundamental limitation for realizing high-performance electronic devices, may be effectively reduced by an external supply voltage. However, a small supply voltage simultaneously brings another serious challenge, that is, a remarkable device inability in transistors. To deal with this issue, we propose a new transistor design based on the metal-semiconductor phase transition in a AsGeC3 monolayer, which provides a switching mechanism of band-to-band tunneling at on- and off-states by gate-voltage modulation. Our first-principles calculations uncover that the monolayer AsGeC3 field-effect transistors (FETs) with gate lengths of 5, 4, and 3 nm may meet well the requirements for on-state current (Ion), power dissipation (PDP), and delay period (τ) as outlined by the International Technology Roadmap for Semiconductors (ITRS) in 2013 to achieve higher performance by the year 2028. Importantly, high performances are achieved only under a very low supply voltage (VDD = 0.05/0.10 V). Significantly, the AsGeC3 FETs exhibit remarkably lower values of both PDP and τ than those of nearly all the transistors reported up to date. These novel 2D metal-semiconductor phase transition-based FETs open up a new door for designing next-generation low-power electronic devices.

7.
Science ; 385(6704): eadm8762, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963845

ABSTRACT

Understanding how numerous quantitative trait loci (QTL) shape phenotypic variation is an important question in genetics. To address this, we established a permanent population of 18,421 (18K) rice lines with reduced population structure. We generated reference-level genome assemblies of the founders and genotyped all 18K-rice lines through whole-genome sequencing. Through high-resolution mapping, 96 high-quality candidate genes contributing to variation in 16 traits were identified, including OsMADS22 and OsFTL1 verified as causal genes for panicle number and heading date, respectively. We identified epistatic QTL pairs and constructed a genetic interaction network with 19 genes serving as hubs. Overall, 170 masking epistasis pairs were characterized, serving as an important factor contributing to genetic background effects across diverse varieties. The work provides a basis to guide grain yield and quality improvements in rice.


Subject(s)
Epistasis, Genetic , Genome, Plant , Oryza , Quantitative Trait Loci , Oryza/genetics , Whole Genome Sequencing , Chromosome Mapping , Genes, Plant , Genotype , Gene Regulatory Networks , Phenotype
8.
Immun Inflamm Dis ; 12(7): e1356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39073297

ABSTRACT

BACKGROUND: Toll-like receptors (TLRs) are a family of fundamental pattern recognition receptors in the innate immune system, constituting the first line of defense against endogenous and exogenous antigens. The gut microbiota, a collection of commensal microorganisms in the intestine, is a major source of exogenous antigens. The components and metabolites of the gut microbiota interact with specific TLRs to contribute to whole-body immune and metabolic homeostasis. OBJECTIVE: This review aims to summarize the interaction between the gut microbiota and TLR signaling pathways and to enumerate the role of microbiota dysbiosis-induced TLR signaling pathways in obesity, inflammatory bowel disease (IBD), and colorectal cancer (CRC). RESULTS: Through the recognition of TLRs, the microbiota facilitates the development of both the innate and adaptive immune systems, while the immune system monitors dynamic changes in the commensal bacteria to maintain the balance of the host-microorganism symbiosis. Dysbiosis of the gut microbiota can induce a cascade of inflammatory and metabolic responses mediated by TLR signaling pathways, potentially resulting in various metabolic and inflammatory diseases. CONCLUSION: Understanding the crosstalk between TLRs and the gut microbiota contributes to potential therapeutic applications in related diseases, offering new avenues for treatment strategies in conditions like obesity, IBD, and CRC.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Homeostasis , Inflammatory Bowel Diseases , Signal Transduction , Toll-Like Receptors , Humans , Gastrointestinal Microbiome/immunology , Signal Transduction/immunology , Toll-Like Receptors/metabolism , Toll-Like Receptors/immunology , Homeostasis/immunology , Animals , Dysbiosis/immunology , Dysbiosis/microbiology , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Obesity/immunology , Obesity/microbiology , Obesity/metabolism , Colorectal Neoplasms/immunology , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/metabolism
9.
J Diabetes Metab Disord ; 23(1): 173-188, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932838

ABSTRACT

Background: Insulin resistance (IR) is considered the pathogenic driver of diabetes, and can lead to obesity, hypertension, coronary artery disease, metabolic syndrome, and other metabolic disorders. Accumulating evidence indicates that the connection between gut microbiota and IR. This bibliometric analysis aimed to summarize the knowledge structure of gut microbiota in IR. Methods: Articles and reviews related to gut microbiota in IR from 2013 to 2022 were retrieved from the Web of Science Core Collection (WoSCC), and the bibliometric analysis and visualization were performed by Microsoft Excel, Origin, R package (bibliometrix), Citespace, and VOSviewer. Results: A total of 4 749 publications from WoSCC were retrieved, including 3 050 articles and 1 699 reviews. The majority of publications were from China and USA. The University Copenhagen and Shanghai Jiao Tong University were the most active institutions. The journal of Nutrients published the most papers, while Nature was the top 1 co-cited journal, and the major area of these publications was molecular, biology, and immunology. Nieuwdorp M published the highest number of papers, and Cani PD had the highest co-citations. Keyword analysis showed that the most frequently occurring keywords were "gut microbiota", "insulin-resistance", "obesity", and "inflammation". Trend topics and thematic maps showed that serum metabolome and natural products, such as resveratrol, flavonoids were the research hotspots in this field. Conclusion: This bibliometric analysis summarised the hotspots, frontiers, pathogenesis, and treatment strategies, providing a clear and comprehensive profile of gut microbiota in IR. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-023-01342-x.

10.
Food Funct ; 15(13): 6798-6824, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38836693

ABSTRACT

In recent decades, natural compounds derived from herbal medicine or dietary sources have played important roles in prevention and treatment of various diseases and have attracted more and more attention. Curcumin, extracted from the Curcumae Longae Rhizoma and widely used as food spice and coloring agent, has been proven to possess high pharmacological value. However, the pharmacological application of curcumin is limited due to its poor systemic bioavailability. As a major active metabolite of curcumin, tetrahydrocurcumin (THC) has higher bioavailability and stability than curcumin. Increasing evidence confirmed that THC had a wide range of biological activities and significant treatment effects on diseases. In this paper, we reviewed the research progress on the biological activities and therapeutic potential of THC on different diseases such as neurological disorders, metabolic syndromes, cancers, and inflammatory diseases. The extensive pharmacological effects of THC involve the modulation of various signaling transduction pathways including MAPK, JAK/STAT, NF-κB, Nrf2, PI3K/Akt/mTOR, AMPK, Wnt/ß-catenin. In addition, the pharmacokinetics, drug combination and toxicology of THC were discussed, thus providing scientific basis for the safe application of THC and the development of its dietary supplements and drugs.


Subject(s)
Curcumin , Curcumin/pharmacology , Curcumin/analogs & derivatives , Curcumin/chemistry , Humans , Animals , Neoplasms/drug therapy , Neoplasms/prevention & control , Neoplasms/metabolism , Signal Transduction/drug effects , Nervous System Diseases/drug therapy , Nervous System Diseases/prevention & control , Curcuma/chemistry , Inflammation/drug therapy , Inflammation/prevention & control , Metabolic Diseases/prevention & control , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism
11.
Nano Lett ; 24(21): 6210-6217, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38709107

ABSTRACT

The spin-orbit coupling (SOC), the dynamics of the nonequilibrium transport process, and the breaking of time-reversal and space-inversion symmetries have been regarded as key factors for the emergence of chirality-induced spin selectivity (CISS) and chirality-dependent spin currents in helix molecules. In this work, we demonstrated the generation of persistent CISS currents in various circular single-stranded DNAs and 310-helix proteins for the first time, regardless of whether an external magnetic flux is applied or not. This new CISS effect presents only in equilibrium transport processes, distinct from the traditional CISS observed in nonequilibrium transport processes and linear helix molecules; we term it as the PCISS effect. Notably, PCISS manifests irrespective of whether the SOC is chirality-driven or stems from heavy-metal substrates, making it an efficient way to generate chirality-locked pure spin currents. Our research establishes a novel paradigm for examining the underlying physics of the CISS effect.

12.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2273-2280, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812127

ABSTRACT

Small nucleic acid drugs mainly include small interfering RNA(siRNA), antisense oligonucleotide(ASO), microRNA(miRNA), messenger RNA(mRNA), nucleic acid aptamer(aptamer), and so on. Its translation or regulation can be inhibited by binding to the RNA of the target molecule. Due to its strong specificity, persistence, and curability, small nucleic acid drugs have received considerable attention in recent years. Recent studies have shown that some miRNAs from animal and plant sources can stably exist in the blood, tissue, and organs of animals and human beings and exert pharmacological action by regulating the expression of various target proteins. This paper summarized the discovery of small nucleic acids derived from traditional Chinese medicine(TCM) and natural drugs and their cross-border regulatory mechanisms and discussed the technical challenges and regulatory issues brought by this new drug, which can provide new ideas and methods for explaining the complex mechanism of TCM, developing new drugs of small nucleic acids from TCM and natural medicine, and conducting regulatory scientific research.


Subject(s)
Drug Discovery , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Animals , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , MicroRNAs/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/chemistry , Nucleic Acids/chemistry
13.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2689-2698, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812169

ABSTRACT

This study aims to prepare co-loaded indocyanine green(ICG) and elemene(ELE) nano-emulsion(NE) in situ gel(ICG-ELE-NE-gel) and evaluate its physicochemical properties and antitumor activity in vitro. ICG-ELE-NE-gel was prepared by aqueous phase titration and cold solution methods, followed by characterization of the morphology, particle size, corrosion, and photothermal conversion characteristics. The human breast cancer MCF-7 cells were taken as the model, combined with 808 nm laser irradia-tion. Cell inhibition rate test and cell uptake test were performed. ICG-ELE-NE was spherical and uniform in size. The average particle size and Zeta potential were(85.61±0.35) nm and(-21.4±0.6) mV, respectively. The encapsulation efficiency and drug loading rate were 98.51%±0.39% and 10.96%±0.24%, respectively. ICG-ELE-NE-gel had a good photothermal conversion effect and good photothermal stability. The dissolution of ICG-ELE-NE-gel had both temperature and pH-responsive characteristics. Compared with free ELE, ICG-ELE-NE-gel combined with near-infrared light irradiation significantly enhanced the inhibitory effect on MCF-7 cells and could be uptaken in large amounts by MCF-7 cells. ICG-ELE-NE-gel was successfully prepared, and its antitumor activity was enhanced after 808 nm laser irradiation.


Subject(s)
Breast Neoplasms , Cell Proliferation , Emulsions , Indocyanine Green , Humans , Indocyanine Green/chemistry , MCF-7 Cells , Emulsions/chemistry , Cell Proliferation/drug effects , Female , Particle Size , Gels/chemistry , Nanoparticles/chemistry , Drug Compounding/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drug Carriers/chemistry
14.
Zhongguo Zhong Yao Za Zhi ; 49(8): 1989-1995, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812215

ABSTRACT

In the new stage of trans-omics and trans-subjects for medicinal plants, it is an urgent need to integrate big data, provide interactive applications, and form a unified and multi-level research system and big data platform. Dao-di medicinal material, as an important source of medicinal plants, is a unique quality concept and comprehensive standard of tranditional Chinese medicine(TCM). Several databases have been developed in China and abroad, such as the Encyclopedia of Traditional Chinese Medicine(ETCM) and the Global Pharmacopoeia Genome Database(GPGD). Yet, most databases do not provide multi-dimensional data, including geographic data, phenotype data, compound data, and genetic data. Sichuan, known as the hometown of TCM therapies and the treasure trove of TCM, is the most representative region of medicinal plant diversity in China. According to the latest data of the fourth national survey of TCM resources, there are more than 8 000 TCM and 86 Dao-di medicinal materials in Sichuan province. Based on resource census data and relevant achievements, this study constructed the bioinformatics database of medicinal plants and the visual analysis platform of production layout by taking the Dao-di medicinal materials in Sichuan province as an example, covering geographic data, phenotype data, compound data, and genetic data. It effectively integrates multi-dimensional data of Dao-di medicinal materials and provides different levels of data interaction applications. The platform is the first large-scale multi-dimensional database and visual platform of Dao-di medicinal materials in Sichuan province, which serves as an essential resource for germplasm resources identification, decomposition of biosynthetic pathways, molecular breeding of varieties and provides medicinal plant resource information and data support for development and utilization of medicinal plants in China and abroad.


Subject(s)
Computational Biology , Databases, Factual , Plants, Medicinal , Plants, Medicinal/chemistry , Plants, Medicinal/genetics , Plants, Medicinal/growth & development , China , Drugs, Chinese Herbal , Medicine, Chinese Traditional
15.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2607-2618, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812161

ABSTRACT

Chronic low-grade inflammation(CLGI), a relatively new concept without a clear definition, refers to a nonspecific, chronic, continuous, and low-grade inflammation state, and it is closely associated with various chronic diseases, including obesity, inflammatory bowel disease, neurodegenerative diseases, and tumors. Improvement of CLGI can slow down disease progression. Anti-inflammatory treatment is an important strategy for prevention and treatment of CLGI. However, there is currently no definitive drug treatment method. Curcumin is a polyphenolic compound extracted from the rhizome of zingiberaceae, with significant anti-inflammatory activity. Research has shown that curcumin can play an anti-inflammatory role by regulating NF-κB, JAK/STAT, PI3K/Akt, MAPK, NLRP3 inflammasome, Nrf2/ARE, and other inflammation-related pathways. This paper summarized the anti-inflammatory mechanisms, pharmacological effect, and clinical application of curcumin in improving CLGI and other diseases, so as to provide a reference for in-depth research and clinical application of curcumin in improving CLGI.


Subject(s)
Curcumin , Inflammation , Curcumin/pharmacology , Curcumin/therapeutic use , Humans , Inflammation/drug therapy , Animals , Chronic Disease/drug therapy , Anti-Inflammatory Agents/pharmacology , Signal Transduction/drug effects , NF-kappa B/metabolism
16.
Microbiol Spectr ; 12(6): e0197923, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38647315

ABSTRACT

Numerous studies have supported that nonalcoholic fatty liver disease (NAFLD) is highly associated with gut microbiota dysbiosis. Ling-Gui-Zhu-Gan decoction (LG) has been clinically used to treat NAFLD, but the underlying mechanism remains unknown. This study investigated the therapeutic effect and mechanisms of LG in mice with NAFLD induced by a high-fat diet (HD). An HD-induced NAFLD mice model was established to evaluate the efficacy of LG followed by biochemical and histopathological analysis. Metagenomics, metabolomics, and transcriptomics were used to explore the structure and metabolism of the gut microbiota. LG significantly improved hepatic function and decreased lipid droplet accumulation in HD-induced NAFLD mice. LG reversed the structure of the gut microbiota that is damaged by HD and improved intestinal barrier function. Meanwhile, the LG group showed a lower total blood bile acids (BAs) concentration, a shifted BAs composition, and a higher fecal short-chain fatty acids (SCFAs) concentration. Furthermore, LG could regulate the hepatic expression of genes associated with the primary BAs biosynthesis pathway and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Our study suggested that LG could ameliorate NAFLD by altering the structure and metabolism of gut microbiota, while BAs and SCFAs are considered possible mediating substances. IMPORTANCE: Until now, there has still been no study on the gut microbiota and metabolomics of Ling-Gui-Zhu-Gan decoction (LG) in nonalcoholic fatty liver disease (NAFLD) mouse models. Our study is the first to report on the reshaping of the structure and metabolism of the gut microbiota by LG, as well as explore the potential mechanism underlying the improvement of NAFLD. Specifically, our study demonstrates the potential of gut microbial-derived short-chain fatty acids (SCFAs) and blood bile acids (BAs) as mediators of LG therapy for NAFLD in animal models. Based on the results of transcriptomics, we further verified that LG attenuates NAFLD by restoring the metabolic disorder of BAs via the up-regulation of Fgf15/FXR in the ileum and down-regulation of CYP7A1/FXR in the liver. LG also reduces lipogenesis in NAFLD mice by mediating the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which then contributes to reducing hepatic inflammation and improving intestinal barrier function to treat NAFLD.


Subject(s)
Diet, High-Fat , Disease Models, Animal , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mice , Male , Diet, High-Fat/adverse effects , Dysbiosis/drug therapy , Dysbiosis/microbiology , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Bile Acids and Salts/metabolism , Fatty Acids, Volatile/metabolism , Lipid Metabolism/drug effects , Signal Transduction/drug effects , Plant Extracts
17.
Heliyon ; 10(7): e28553, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596011

ABSTRACT

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder, characterized by progressive limb weakness, dysphagia, dysphonia, and respiratory failure due to degeneration of upper and lower motor neurons. The pathogenesis of ALS is still unclear. Neuroinflammation has been found to be involved in its development and progression. Cytokines play a significant role in the inflammatory process. This study aims to identify novel biomarkers that may assist in the diagnosis of ALS. Methods: In Fujian Medical University Union Hospital and Huashan Hospital Fudan University, two independent centers, we prospectively recruited 50 ALS patients, and 41 healthy controls (25 ALS and 26 controls in the first stage and 25 ALS and 15 controls in the validation stage). An 18-plex Luminex kit was used to screen the serum cytokines levels in the first stage. Commercial ELISA kits were used to measure the levels of target cytokines in the validation stage. A single-molecule array HD-X platform was applied to assess the levels of serum neurofilament light chain (NFL). Results: The levels of serum IL-18 were markedly increased in patients with ALS in the first stage (p = 0.016). The ROC curve showed an area under the curve at 0.695 (95% CI 0.50-0.84) in distinguishing ALS patients from healthy controls. The IL-21 was decreased in elderly patients when grouped by 55 years old (the medium age). Furthermore, the IL-5, IL-13, IL-18, and NFL had a positive relationship with the disease progression of ALS. We also found that serum IL-18 was markedly increased in ALS patients in the validation stage (167.67 [148.25-175.59] vs 116.44 [102.43-122.19]pg/ml, p < 0.0015). Conclusion: In this study, we identified systemic cytokine profile changes in the serum of ALS patients, especially the elevated IL-18, as well as the decreased IL-21 in elder patients. These changes in serum cytokine profiles may shed new light on an in-depth understanding of the immunopathogenic characteristics of ALS.

18.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1327-1334, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621980

ABSTRACT

This study aims to investigate whether baicalin induces ferroptosis in HepG2 cells and decipher the underlying mechanisms based on network pharmacology and cell experiments. HepG2 cells were cultured in vitro and the cell viability was detected by the cell counting kit-8(CCK-8). The transcriptome data of hepatocellular carcinoma were obtained from the Cancer Genome Atlas(TCGA), and the ferroptosis gene data from FerrDb V2. The DEG2 package was used to screen the differentially expressed genes(DEGs), and the common genes between DEGs and ferroptosis genes were selected as the target genes that mediate ferroptosis to regulate hepatocellular carcinoma progression. The functions and structures of the target genes were analyzed by Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment with the thresholds of P<0.05 and |log_2(fold change)|>0.5. DCFH-DA probe was used to detect the changes in the levels of cellular reactive oxygen species(ROS) in each group. The reduced glutathione(GSH) assay kit was used to measure the cellular GSH level, and Fe~(2+) assay kit to determine the Fe~(2+) level. Real-time quantitative PCR(RT-PCR) was employed to measure the mRNA levels of glutathione peroxidase 4(GPX4) and solute carrier family 7 member 11(SLC7A11) in each group. Western blot was employed to determine the protein levels of GPX4, SLC7A11, phosphatidylinositol 3-kinase(PI3K), p-PI3K, protein kinase B(Akt), p-Akt, forkhead box protein O3a(FoxO3a), and p-FoxO3a in each group. The results showed that treatment with 200 µmol·L~(-1) baicalin for 48 h significantly inhibited the viability of HepG2 cells. Ferroptosis in hepatocellular carcinoma could be regulated via the PI3K/Akt signaling pathway. The cell experiments showed that baicalin down-regulated the expression of SLC7A11 and GPX4, lowered the GSH level, and increased ROS accumulation and Fe~(2+) production in HepG2 cells. However, ferrostatin-1, an ferroptosis inhibitor, reduced baicalin-induced ROS accumulation, up-regulated the expression of SLC7A11 and GPX4, elevated the GSH level, and decreased PI3K, Akt, and FoxO3a phosphorylation. In summary, baicalin can induce ferroptosis in HepG2 cells by inhibiting the ROS-mediated PI3K/Akt/FoxO3a pathway.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Flavonoids , Liver Neoplasms , Humans , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Reactive Oxygen Species , Hep G2 Cells , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Signal Transduction
19.
Acad Radiol ; 31(8): 3306-3314, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38429187

ABSTRACT

RATIONALE AND OBJECTIVES: To investigate the impact of different regions of interest (ROI) on the assessment of shear wave elastography (SWE) in evaluating the meniscus of the knee joint. MATERIALS AND METHODS: After ethical approval, a total of 141 participants were enrolled in this prospective study from February to October 2023. SWE was utilized to evaluate the anterior horn of the lateral meniscus (LM) and medial meniscus (MM), using two different ROIs (ROI-Small and ROI-Trace) to measure the elastic mean value (Emean) and elastic maximum value (Emax). The differences in elasticity values between the normal menisci and torn menisci were compared, and the impact of different ROI selection methods on the diagnostic performance of elastic parameters in the torn menisci was assessed using receiver operating characteristic (ROC) curves. RESULTS: In Emean comparison, only MM in the tear group showed higher ROI-S than ROI-T. When comparing Emax, all ROI-T values were higher than the ROI-S values, and this difference was statistically significant. Different sizes of ROI did not significantly impact the diagnostic performance of Emean in LM and MM, nor the diagnostic effectiveness of Emax in LM. However, only the area under the curve (AUC) of MM for Emax in both ROI-S and ROI-T showed a statistically significant difference. CONCLUSION: The shear wave elasticity values and diagnostic performance may vary depending on the ROI settings. Therefore, it is recommended to use a 2 mm diameter ROI placed at the central position of the meniscus, with Emean as the elasticity index.


Subject(s)
Elasticity Imaging Techniques , Humans , Elasticity Imaging Techniques/methods , Female , Male , Prospective Studies , Adult , Middle Aged , Menisci, Tibial/diagnostic imaging , Tibial Meniscus Injuries/diagnostic imaging , Knee Joint/diagnostic imaging , Young Adult , Aged
20.
Appl Microbiol Biotechnol ; 108(1): 170, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38265689

ABSTRACT

The deep-sea environment is an extremely difficult habitat for microorganisms to survive in due to its intense hydrostatic pressure. However, the mechanisms by which these organisms adapt to such extreme conditions remain poorly understood. In this study, we investigated the metabolic adaptations of Microbacterium sediminis YLB-01, a cold and stress-tolerant microorganism isolated from deep-sea sediments, in response to high-pressure conditions. YLB-01 cells were cultured at normal atmospheric pressure and 28 ℃ until they reached the stationary growth phase. Subsequently, the cells were exposed to either normal pressure or high pressure (30 MPa) at 4 ℃ for 7 days. Using NMR-based metabolomic and proteomic analyses of YLB-01 cells exposed to high-pressure conditions, we observed significant metabolic changes in several metabolic pathways, including amino acid, carbohydrate, and lipid metabolism. In particular, the high-pressure treatment stimulates cell division and triggers the accumulation of UDP-glucose, a critical factor in cell wall formation. This finding highlights the adaptive strategies used by YLB-01 cells to survive in the challenging high-pressure environments of the deep sea. Specifically, we discovered that YLB-01 cells regulate amino acid metabolism, promote carbohydrate metabolism, enhance cell wall synthesis, and improve cell membrane fluidity in response to high pressure. These adaptive mechanisms play essential roles in supporting the survival and growth of YLB-01 in high-pressure conditions. Our study offers valuable insights into the molecular mechanisms underlying the metabolic adaptation of deep-sea microorganisms to high-pressure environments. KEY POINTS: • NMR-based metabolomic and proteomic analyses were conducted on Microbacterium sediminis YLB-01 to investigate the significant alterations in several metabolic pathways in response to high-pressure treatment. • YLB-01 cells used adaptive strategies (such as regulated amino acid metabolism, promoted carbohydrate metabolism, enhanced cell wall synthesis, and improved cell membrane fluidity) to survive in the challenging high-pressure environment of the deep sea. • High-pressure treatment stimulated cell division and triggered the accumulation of UDP-glucose, a critical factor in cell wall formation, in Microbacterium sediminis YLB-01 cells.


Subject(s)
Actinomycetales , Proteomics , Amino Acids , Glucose , Uridine Diphosphate , Microbacterium
SELECTION OF CITATIONS
SEARCH DETAIL