Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(6): 464, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942749

ABSTRACT

The role of mitochondria peptides in the spreading of glioblastoma remains poorly understood. In this study, we investigated the mechanism underlying intracranial glioblastoma progression. Our findings demonstrate that the mitochondria-derived peptide, humanin, plays a significant role in enhancing glioblastoma progression through the intratumoral activation of the integrin alpha V (ITGAV)-TGF beta (TGFß) signaling axis. In glioblastoma tissues, humanin showed a significant upregulation in the tumor area compared to the corresponding normal region. Utilizing multiple in vitro pharmacological and genetic approaches, we observed that humanin activates the ITGAV pathway, leading to cellular attachment and filopodia formation. This process aids the subsequent migration and invasion of attached glioblastoma cells through intracellular TGFßR signaling activation. In addition, our in vivo orthotopic glioblastoma model provides further support for the pro-tumoral function of humanin. We observed a correlation between poor survival and aggressive invasiveness in the humanin-treated group, with noticeable tumor protrusions and induced angiogenesis compared to the control. Intriguingly, the in vivo effect of humanin on glioblastoma was significantly reduced by the treatment of TGFBR1 inhibitor. To strengthen these findings, public database analysis revealed a significant association between genes in the ITGAV-TGFßR axis and poor prognosis in glioblastoma patients. These results collectively highlight humanin as a pro-tumoral factor, making it a promising biological target for treating glioblastoma.


Subject(s)
Disease Progression , Glioblastoma , Integrin alphaV , Signal Transduction , Transforming Growth Factor beta , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Humans , Transforming Growth Factor beta/metabolism , Animals , Signal Transduction/drug effects , Cell Line, Tumor , Integrin alphaV/metabolism , Integrin alphaV/genetics , Mice , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Movement/drug effects , Mice, Nude , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Neoplasm Invasiveness , Gene Expression Regulation, Neoplastic/drug effects
2.
Commun Biol ; 5(1): 593, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710828

ABSTRACT

The heterogeneity of glioblastoma multiforme (GBM) leads to poor patient prognosis. Here, we aim to investigate the mechanism through which GBM heterogeneity is coordinated to promote tumor progression. We find that proneural (PN)-GBM stem cells (GSCs) secreted dopamine (DA) and transferrin (TF), inducing the proliferation of mesenchymal (MES)-GSCs and enhancing their susceptibility toward ferroptosis. PN-GSC-derived TF stimulates MES-GSC proliferation in an iron-dependent manner. DA acts in an autocrine on PN-GSC growth in a DA receptor D1-dependent manner, while in a paracrine it induces TF receptor 1 expression in MES-GSCs to assist iron uptake and thus enhance ferroptotic vulnerability. Analysis of public datasets reveals worse prognosis of patients with heterogeneous GBM with high iron uptake than those with other GBM subtypes. Collectively, the findings here provide evidence of commensalism symbiosis that causes MES-GSCs to become iron-addicted, which in turn provides a rationale for targeting ferroptosis to treat resistant MES GBM.


Subject(s)
Brain Neoplasms , Ferroptosis , Glioblastoma , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Dopamine/metabolism , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Iron/metabolism , Neoplastic Stem Cells/metabolism , Symbiosis
3.
J Lifestyle Med ; 11(1): 1-7, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33763336

ABSTRACT

Cancer incidences are rising globally. Therefore, in order to prevent and treat cancer, understanding cancer pathology is crucial. Tumors reprogram their metabolic phenotype to meet their needs for bioenergy, biosynthesis, and redox control. Alteration of the metabolic pathway has been proposed as the hallmark of cancer and explains the distinction between normal and cancer cells concerning nutrient utilization. Changes in the metabolism of nutrients such as glucose, amino acid, and fatty acid are associated with cancer risk. Luckily, this can be controlled with lifestyle modifications. Improvements in lifestyle behaviors to reduce cancer risks include a healthy diet, calorie restriction, and regular physical activity. This review begins with the understandings of metabolic reprogramming in cancer. Then, there will be evidence on the correlation between lifestyle factors and altered nutrient metabolism suggesting an application of lifestyle intervention for cancer risk reduction.

4.
Exp Mol Med ; 52(4): 629-642, 2020 04.
Article in English | MEDLINE | ID: mdl-32280134

ABSTRACT

Glioblastomas (GBMs) are characterized by four subtypes, proneural (PN), neural, classical, and mesenchymal (MES) GBMs, and they all have distinct activated signaling pathways. Among the subtypes, PN and MES GBMs show mutually exclusive genetic signatures, and the MES phenotype is, in general, believed to be associated with more aggressive features of GBM: tumor recurrence and drug resistance. Therefore, targeting MES GBMs would improve the overall prognosis of patients with fatal tumors. In this study, we propose peroxisome proliferator-activated receptor gamma (PPARγ) as a potential diagnostic and prognostic biomarker as well as therapeutic target for MES GBM; we used multiple approaches to assess PPARγ, including biostatistics analysis and assessment of preclinical studies. First, we found that PPARγ was exclusively expressed in MES glioblastoma stem cells (GSCs), and ligand activation of endogenous PPARγ suppressed cell growth and stemness in MES GSCs. Further in vivo studies involving orthotopic and heterotopic xenograft mouse models confirmed the therapeutic efficacy of targeting PPARγ; compared to control mice, those that received ligand treatment exhibited longer survival as well as decreased tumor burden. Mechanistically, PPARγ activation suppressed proneural-mesenchymal transition (PMT) by inhibiting the STAT3 signaling pathway. Biostatistical analysis using The Cancer Genomics Atlas (TCGA, n = 206) and REMBRANDT (n = 329) revealed that PPARγ upregulation is linked to poor overall survival and disease-free survival of GBM patients. Analysis was performed on prospective (n = 2) and retrospective (n = 6) GBM patient tissues, and we finally confirmed that PPARγ expression was distinctly upregulated in MES GBM. Collectively, this study provides insight into PPARγ as a potential therapeutic target for patients with MES GBM.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Glioblastoma/metabolism , PPAR gamma/antagonists & inhibitors , PPAR gamma/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/diagnosis , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Mice , PPAR gamma/genetics , Prognosis , RNA, Small Interfering/genetics , Signal Transduction , Transcriptome , Xenograft Model Antitumor Assays
5.
Oncotarget ; 10(14): 1473, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30858930

ABSTRACT

[This corrects the article DOI: 10.18632/oncotarget.19700.].

6.
EBioMedicine ; 41: 134-145, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30755372

ABSTRACT

BACKGROUND: c-Src is a driver oncogene well-known for tumorigenic signaling, but little for metabolic function. Previous reports about c-Src regulation of glucose metabolism prompted us to investigate its function in other nutrient modulation, particularly in lipid metabolism. METHODS: Oil-red O staining, cell growth assay, and tumor volume measurement were performed to determine lipid amount and growth inhibitory effect of treatments in lung cancer cells and xenograft model. Gene expression was evaluated by immunoblotting and relative RT-PCR. Transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ) was assessed by luciferase assay. Reactive oxygen species (ROS) was measured using ROS sensing dye. Oxygen consumption rate was evaluated by Seahorse XF Mito Stress Test. Clinical relevance of candidate proteins was examined using patient samples and public database analysis. FINDINGS: Inhibition of Src induced lipolysis and increased intracellular ROS. Src inhibition derepressed PPARγ transcriptional activity leading to induced expression of lipolytic gene fatty acid binding protein (FABP) 4 which accompanies reduced lipid droplets and decreased tumor growth. The reverse correlation of Src and FABP4 was confirmed in pair-matched lung cancer patient samples, and further analysis using public datasets revealed upregulation of lipolytic genes is associated with better prognosis of cancer patients. INTERPRETATION: This study provides an insight of how oncogenic factor Src concurrently regulates both cellular signaling pathways and metabolic plasticity to drive cancer progression. FUND: National Research Foundation of Korea and Korea Health Industry Development Institute.


Subject(s)
Lipolysis , Lung Neoplasms/metabolism , src-Family Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , CSK Tyrosine-Protein Kinase , Cell Line, Tumor , Fatty Acid-Binding Proteins/metabolism , HEK293 Cells , Humans , Indoles/pharmacology , Indoles/therapeutic use , Lung Neoplasms/drug therapy , Mice , Mice, Inbred BALB C , Mice, Nude , PPAR gamma/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Reactive Oxygen Species/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , src-Family Kinases/genetics , src-Family Kinases/metabolism
7.
J Recept Signal Transduct Res ; 38(3): 191-197, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29873276

ABSTRACT

CONTEXT: The metabolic function of peroxisome proliferator-activated receptor gamma (PPARγ) in lung cancer remains unclear. OBJECTIVES: To determine the relationship of PPARγ on ALDH1A3-induced lipid peroxidation to inhibit lung cancer cell growth. MATERIALS AND METHODS: In silico analysis using microarray dataset was performed to screen the positive correlation between PPARγ and all ALDH isoforms. NUBIscan software and ChIP assay were used to identify the binding sites (BSs) of PPARγ on ALDH1A3 promoter. The expression of ALDH1A3 under thiazolidinedione (TZD) treatment was evaluated by QPCR and Western Blot in HBEC and H1993 cell lines. Upon treatment of TZD, colony formation assay was used to check cell growth inhibition and 4-hydroxy-2-nonenal (4HNE) production as lipid peroxidation marker was determined by Western Blot in PPARγ positive cell H1993 and PPARγ negative cell H1299. RESULTS: Compared to other ALDH isoforms, ALDH1A3 showed the highest positive correlation to PPARγ expression. ALDH1A3 upregulated PPARγ expression while PPARγ activation suppressed ALDH1A3. Among 2 potential screened PPARγ response elements, BS 1 and 2 in the promoter of ALDH1A3 gene, PPARγ bound directly to BS2. Ligand activation of PPARγ suppressed mRNA and protein expression of ALDH1A3. Growth inhibition was observed in H1993 (PPARγ positive cell) treated with PPARγ activator and ALDH inhibitor compared to H1299 (PPARγ negative cell). PPARγ activation increased 4HNE which is known to be suppressed by ALDH1A3. CONCLUSIONS: ALDH1A3 suppression could be one of PPARγ tumor suppressive function. This study provides a better understanding of the role of PPARγ in lung cancer.


Subject(s)
Aldehyde Oxidoreductases/genetics , Cell Proliferation/drug effects , Lung Neoplasms/metabolism , PPAR gamma/genetics , Aldehyde Oxidoreductases/chemistry , Aldehydes/pharmacology , Apoptosis/drug effects , Binding Sites/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lipid Peroxidation/drug effects , Lung Neoplasms/genetics , Lung Neoplasms/pathology , PPAR gamma/chemistry , Protein Binding/drug effects , Thiazolidinediones/pharmacology
8.
Anticancer Res ; 38(4): 2187-2193, 2018 04.
Article in English | MEDLINE | ID: mdl-29599338

ABSTRACT

BACKGROUND/AIM: Cancer cells are distinct in terms of glutamine dependence. Here we investigated the different susceptibility of glutamine-independent and glutamine-dependent non-small cell lung cancer (NSCLC) to treatment with tumor necrosis factor receptor-associated protein 1 (TRAP1) inhibitor gamitrinib-triphenylphosphonium (G-TPP). MATERIALS AND METHODS: Cell viability and proliferation under glutamine deprivation and G-TPP treatment were determined by the MTT and colony-formation assays. Protein and mRNA expression were determined by western blot and quantitative polymerase chain reaction. Colorimetric-based assay was performed to check for glutamine synthetase (GS) activity. RESULTS: NSCLC cells showed diverse adaptation under glutamine-depleted condition and were categorized into glutamine-independent and glutamine-dependent cells. Treatment with G-TPP particularly increased GS activity and induced cell death due to energy shortage indicated by phosphorylated AMP-activated protein kinase (AMPK) in glutamine-dependent cells. CONCLUSION: This finding provides better understanding of TRAP1-mediated glutamine metabolism through GS activity, and evidence that TRAP1 could be a promising therapeutic target for glutamine-addicted cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Glutamate-Ammonia Ligase/metabolism , Glutamine/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lung Neoplasms/pathology , Molecular Targeted Therapy , Terphenyl Compounds/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Enzyme Activation/drug effects , Humans , Lung Neoplasms/metabolism , Macrocyclic Compounds/pharmacology
9.
Oncotarget ; 8(47): 82491-82505, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29137280

ABSTRACT

Metabolic reprogramming as a crucial emerging hallmark of cancer is critical for tumor cells to maintain cellular bioenergetics, biosynthesis and reduction/oxidation (REDOX) balance. Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor regulating transcription of diverse gene sets involved in inflammation, metabolism, and suppressing tumor growth. Thiazolidinediones (TZDs), as selective PPARγ ligands, are insulin-sensitizing drugs widely prescribed for type 2 diabetic patients in the clinic. Here, we report that sumoylation of PPARγ couples lipid metabolism to tumor suppressive function of the receptor in lung cancer. We found that ligand activation of PPARγ dramatically induced de novo lipid synthesis as well as fatty acid beta (ß)-oxidation in lung cancer both in vitro and in vivo. More importantly, it turns out that PPARγ regulation of lipid metabolism was dependent on sumoylation of PPARγ. Further biochemical analysis revealed that PPARγ-mediated lipid synthesis depletes nicotinamide adenine dinucleotide phosphate (NADPH), consequently resulting in increased mitochondrial reactive oxygen species (ROS) level that subsequently disrupted REDOX balance in lung cancer. Therefore, liganded PPARγ sumoylation is not only critical for cellular lipid metabolism but also induces oxidative stress that contributes to tumor suppressive function of PPARγ. This study provides an important insight of future translational and clinical research into targeting PPARγ regulation of lipid metabolism in lung cancer patients accompanying type 2 diabetes.

10.
Oncotarget ; 7(34): 54702-54713, 2016 Aug 23.
Article in English | MEDLINE | ID: mdl-27419630

ABSTRACT

Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) have clinically benefited to lung cancer patients harboring a subset of activating EGFR mutations. However, even with the remarkable therapeutic response at the initial TKI treatment, most lung cancer patients eventually have relapsed aggressive tumors due to acquired resistance to the TKIs. Here, we report that 3, 4, 5-trihydroxybenzoic acid or gallic acid (GA), a natural polyphenolic compound, shows anti-tumorigenic effects in TKI-resistant non-small cell lung cancer (NSCLC). Using both in vitro growth assay and in vivo xenograft animal model, we demonstrated tumor suppressive effect of GA was more selective for the TKI-resistant cancer compared to the TKI-sensitive one. Mechanistically, GA treatment inhibited Src-Stat3-mediated signaling and decreased the expression of Stat3-regulated tumor promoting genes, subsequently inducing apoptosis and cell cycle arrest in the TKI-resistant lung cancer but not in the TKI-sensitive one. Consistent with the in vitro results, in vivo xenograft experiments showed the TKI-resistant tumor-selective growth inhibition and suppression of Src-Stat3-dependent signaling in the GA-treated tumors isolated from the xenograft model. This finding identified an importance of Src-Stat3 signaling cascade in GA-mediated tumor-suppression activity and, more importantly, provides a novel therapeutic insight of GA for advanced TKI-resistant lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/drug effects , Gallic Acid/pharmacology , Lung Neoplasms/drug therapy , STAT3 Transcription Factor/metabolism , src-Family Kinases/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Gefitinib , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...