Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2023: 6409385, 2023.
Article in English | MEDLINE | ID: mdl-37151603

ABSTRACT

Phytosterols (PS) have been shown to regulate cholesterol metabolism and alleviate hyperlipidemia (HLP), but the mechanism is still unclear. In this study, we investigated the mechanism by which PS regulates cholesterol metabolism in high-fat diet (HFD) mice. The results showed that PS treatment reduced the accumulation of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) in the serum of HFD mice, while increasing the serum levels of high-density lipoprotein cholesterol (HDL-C). Compared with HFD mice, PS not only increased the antioxidant activity of the liver but also regulated the mRNA expression levels of enzymes and receptors related to cholesterol metabolism. The hypolipidemic effect of PS was abolished by antibiotic (Abx) intervention and reproduced by fecal transplantation (FMT) intervention. The results of 16S rRNA sequencing analysis showed that PS modulated the gut microbiota of mice. PS reduced the relative abundance of Lactobacillus and other bile salt hydrolase- (BSH-) producing gut microbiota in HFD mice, which are potentially related to cholesterol metabolism. These findings partially explain the mechanisms by which PS regulates cholesterol metabolism. This implies that regulation of the gut microbiota would be a potential target for the treatment of HLP.


Subject(s)
Gastrointestinal Microbiome , Hyperlipidemias , Phytosterols , Mice , Animals , Phytosterols/pharmacology , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Lipid Metabolism , Cholesterol, LDL , Liver/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
2.
Int J Biol Macromol ; 222(Pt A): 1127-1136, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36191780

ABSTRACT

Shenling Baizhu San has beneficial effects on the metabolism of the gut microbiota, however, the mechanisms underlying microbiota metabolites mediated anti-inflammation signaling are not well understood. Previously, we have demonstrated that supplementation with Shenling Baizhu San alleviated antibiotic-associated diarrhea (AAD). The current study intends to investigate the dynamic modulation of Shenling Baizhu San polysaccharides (SP) on colitis from the gut microbiota metabolites perspective. Administration of SP effectively relieved colitis induced by DSS in mice, including alleviating body weight loss, the downregulation of colon proinflammatory mediators, and the promotion of intestinal injury repair. Whereas, the efficacy was eliminated by antibiotics, which demonstrated that the efficacy of SP was dependent on the gut microbiota. Fecal microbiota transplantation (FMT) showed that the efficacy of SP can be transferred to gut microbiota. Serum metabolomics analysis showed that supplementation with SP significantly promoted tryptophan metabolism, which was consistent with the changed structure of the gut microbiota, including Bacteroides, Bifidobacterium and Ruminococcus regulated by SP. Especially, the tryptophan metabolites-kynurenine (KYN) activated the expression of amplifying aryl-hydrocarbon receptor (AhR) and Cyp1A1 to promote IL-10 expression in colon. These data suggested that SP positively affected colitis in mice by regulating tryptophan metabolic function of their gut microbiota.


Subject(s)
Colitis , Drugs, Chinese Herbal , Mice , Animals , Tryptophan/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/microbiology , Drugs, Chinese Herbal/pharmacology , Colon , Polysaccharides/adverse effects , Mice, Inbred C57BL , Dextran Sulfate/adverse effects , Disease Models, Animal
3.
Front Nutr ; 9: 986943, 2022.
Article in English | MEDLINE | ID: mdl-36051905

ABSTRACT

Atopic dermatitis (AD) is a common chronic allergic skin disease characterized clinically by severe skin lesions and pruritus. Portulaca oleracea L. (PO) is a resourceful plant with homologous properties in medicine and food. In this study, we used two different methods to extract PO, and compared the therapeutic effects of PO aqueous extract (POAE) and PO ultrasound-assisted ethanol extract (POEE) on 2,4-dinitrochlorobenzene (DNCB)-induced AD mice. The results showed that in POAE and POEE, the extraction rates of polysaccharides were 16.95% and 9.85%, while the extraction rates of total flavonoids were 3.15% and 3.25%, respectively. Compared with AD mice, clinical symptoms such as erythema, edema, dryness and ulceration in the back and left ear were alleviated, and pruritus behavior was reduced after POAE and POEE treatments. The thickness of the skin epidermis was thinned, the density of skin nerve fibers labeled with protein gene product 9.5 (PGP9.5) was decreased, and mast cell infiltration was reduced. There was a decrease in blood lymphocytes, eosinophils and basophils, a significant decrease in spleen index and a noticeable decrease in serum immunoglobulin E (Ig E). POEE significantly reduced the concentration of the skin pruritic factor interleukin (Il)-31. POAE and POEE reduced the concentration of skin histamine (His), down-regulated mRNA expression levels of interferon-γ (Ifnγ), tumor necrosis factor-α (Tnf-α), thymic stromal lymphopoietin (Tslp) and Il-4, with an increase of Filaggrin (Flg) and Loricrin (Lor) in skin lesions. These results suggested that POAE and POEE may inhibit atopic response and alleviate the clinical symptoms of AD by inhibiting the expression of immune cells, inflammatory mediators and cytokines. PO may be a potential effective drug for AD-like diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...