Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 886
Filter
1.
Nat Commun ; 15(1): 6602, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097583

ABSTRACT

Broadening gene therapy applications requires manufacturable vectors that efficiently transduce target cells in humans and preclinical models. Conventional selections of adeno-associated virus (AAV) capsid libraries are inefficient at searching the vast sequence space for the small fraction of vectors possessing multiple traits essential for clinical translation. Here, we present Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait AAV capsids. By leveraging a capsid library that uniformly samples the manufacturable sequence space, reproducible screening data are generated to train accurate sequence-to-function models. Combining six models, we designed a multi-trait (liver-targeted, manufacturable) capsid library and validated 88% of library variants on all six predetermined criteria. Furthermore, the models, trained only on mouse in vivo and human in vitro Fit4Function data, accurately predicted AAV capsid variant biodistribution in macaque. Top candidates exhibited production yields comparable to AAV9, efficient murine liver transduction, up to 1000-fold greater human hepatocyte transduction, and increased enrichment relative to AAV9 in a screen for liver transduction in macaques. The Fit4Function strategy ultimately makes it possible to predict cross-species traits of peptide-modified AAV capsids and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits.


Subject(s)
Capsid Proteins , Capsid , Dependovirus , Genetic Vectors , Liver , Dependovirus/genetics , Animals , Humans , Mice , Genetic Vectors/genetics , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Liver/metabolism , Transduction, Genetic , Gene Transfer Techniques , Machine Learning , Genetic Therapy/methods , Macaca , Hepatocytes/metabolism , HEK293 Cells , Genetic Engineering/methods
2.
Front Pediatr ; 12: 1365917, 2024.
Article in English | MEDLINE | ID: mdl-39055621

ABSTRACT

Objective: This research aims to investigate the levels of lymphocytes, immunoglobulins, and cytokines in children with infantile spasms (IS) before and after adrenocorticotropic hormone (ACTH) therapy and to explore the application of these markers in evaluating the therapeutic effects of ACTH on infantile spasms. Methods: From May to November 2022, 35 children initially diagnosed with IS and treated at our hospital were regarded as the observation group, and 35 healthy children who underwent physical examination at our hospital during the same period were regarded as the control group. Children in the observation group received intramuscular injections of ACTH for 2 weeks. Fasting venous blood was collected from the control group and the observation group before and after ACTH therapy. Serum levels of immunoglobulins IgG, IgA, and IgM in serum were detected by immunoturbidimetry. T-cell subsets (CD3+, CD3+CD4+, and CD3+CD8+) and B-cell subsets [CD3-CD19+ and CD3-CD16+CD56+ natural killer (NK) cells] were detected by flow cytometry, and the ratio of CD3+CD4+/CD3+CD8+ was calculated. Serum levels of interleukin-1ß (IL-1ß), interleukin-2R (IL-2R), and interleukin-6 (IL-6) cytokines were detected by the enzyme-linked immunosorbent assay, and changes in serum cytokine and immunoglobulin levels in the two groups were compared before therapy, whereas in observation group one, these comparisons were made both before and after ACTH therapy. Results: Compared to the control group, the observation group showed significantly increased serum levels of immunoglobulins IgG and IgM before therapy, while the level of IgA was significantly decreased (p < 0.05). Also, the percentage of CD3-CD19+ B cells was significantly increased, while the percentages of CD3+ T cells and CD3+CD4+ T cells were significantly decreased (p < 0.05). The percentages of CD3+CD8+ T cells, CD3-CD16+CD56+ NK cells, and CD3+CD4+/CD3+CD8+ cells did not change significantly (p > 0.05); the levels of cytokines IL-1 ß, IL-2R, and IL-6 were significantly increased (p < 0.05). Compared to levels before treatment, the serum level of immunoglobulin IgG in the observation group after ACTH therapy was significantly reduced (p < 0.05), while the IgA and IgM levels did not change significantly (p > 0.05). The percentages of CD3+ T cells and CD3+CD4+ T cells were significantly increased, while the percentages of CD3-CD16+CD56+ NK cells and CD3-CD19+ B cells were significantly decreased (p < 0.05); however, the percentages of CD3+CD8+ T cells and the CD3+CD4+/CD3+CD8+ ratio did not change significantly (p > 0.05). Furthermore, the levels of cytokines IL-1 ß, IL-2R, and IL-6 were significantly reduced (p < 0.05). Conclusion: Children with IS exhibit immune dysfunction, and the changes in serological immune indices after ACTH treatment indicate that ACTH may control seizures in IS children by regulating and improving immune dysfunction. Therefore, the therapeutic effects of ACTH on IS can be evaluated by detecting the levels of cytokines and immunoglobulins.

3.
World J Clin Cases ; 12(19): 3950-3955, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994291

ABSTRACT

BACKGROUND: We report a case of eye-penetrating injury in which a massive silicone oil migration into the patient's subconjunctival space and orbit occurred after vitrectomy. CASE SUMMARY: A 30-year-old male patient sought medical attention at Ganzhou People's Hospital after experiencing pain and vision loss in his left eye due to a nail wound on December 9, 2023. Diagnosis of penetrating injury caused by magnetic foreign body retention in the left eye and hospitalization for treatment. On December 9, 2023, pars plana vitrectomy was performed on the left eye for intraocular foreign body removal, abnormal crystal extraction, retinal photocoagulation. Owing to the discovery of retinal detachment at the posterior pole during surgery, silicone oil was injected to fill the vitreous body, following which upper conjunctival bubble-like swelling was observed. Postoperative orbital computed tomography (CT) review indicated migration of silicone oil to the subconjunctival space and orbit through a self-permeable outlet. On December 18, 2023, the patient sought treatment at the First Affiliated Hospital of Nanchang University, China. The patient presented with a pronounced foreign body sensation following left eye surgery. On December 20, 2023, the foreign body was removed from the left eye frame and an intraocular examination was conducted. The posterior scleral tear had closed, leading to termination of the surgical procedure following supplementary laser treatment around the tear. The patient reported a significant reduction in ocular surface symptoms just one day after surgery. Furthermore, a notable decrease in the migration of silicone oil was observed in orbital CT scans. CONCLUSION: The timing of silicone oil injection for an eye-penetrating injury should be carefully evaluated to avoid the possibility of silicone oil migration.

4.
Am J Surg Pathol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028142

ABSTRACT

Differences in risk factors (RF) of lymph node metastasis (LNM) and prognosis between submucosal early gastric cardiac (SEGCC) and noncardiac (SEGNCC) carcinomas remain unclear. In this study, we investigated and compared RF of LNM and prognosis in 891 patients with radical gastrectomy for SEGCC (n=217) or SEGNCC (n=674). Compared with SEGNCC, SEGCC displayed significantly higher proportion of elderly patients (70 y or above), the elevated macroscopic type, well/moderately differentiated tubular and low-grade papillary adenocarcinomas, as well as low-grade tumor budding, but lower prevalence of the depressed macroscopic type, poorly differentiated tubular adenocarcinoma, mixed adenocarcinoma, poorly cohesive carcinoma, lymphovascular invasion (LVI), perineural invasion, and high-grade tumor budding. By univariate analysis, significant RF for LNM of the cohort included female sex, poor differentiation, SM2 invasion, LVI, intermediate-grade and high-grade tumor budding, whereas tumor size, histology type, and perineural invasion were the significant RF for LNM in SEGNCC. By multivariate analysis, significant independent RF for LNM included female sex and LVI in SEGCC but were female sex, mixed adenocarcinoma, LVI, and high-grade tumor budding in SEGNCC. The 5-year overall survival was significantly worse in SEGCC than in SEGNCC for patients with LNM, but not for those without. For overall survival, LNM was the only significant independent RF in SEGCC, whereas age 70 years or above and LNM were independent RF in SEGNCC. The results of our study provided the clinicopathologic evidence for individualized clinical management strategies for these 2 groups of patients and suggested different pathogenesis mechanisms between SEGCC and SEGNCC.

5.
BMC Ophthalmol ; 24(1): 315, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075405

ABSTRACT

AIM: Recent imaging studies have found significant abnormalities in the brain's functional or structural connectivity among patients with high myopia (HM), indicating a heightened risk of cognitive impairment and other behavioral changes. However, there is a lack of research on the topological characteristics and connectivity changes of the functional networks in HM patients. In this study, we employed graph theoretical analysis to investigate the topological structure and regional connectivity of the brain function network in HM patients. METHODS: We conducted rs-fMRI scans on 82 individuals with HM and 59 healthy controls (HC), ensuring that the two groups were matched for age and education level. Through graph theoretical analysis, we studied the topological structure of whole-brain functional networks among participants, exploring the topological properties and differences between the two groups. RESULTS: In the range of 0.05 to 0.50 of sparsity, both groups demonstrated a small-world architecture of the brain network. Compared to the control group, HM patients showed significantly lower values of normalized clustering coefficient (γ) (P = 0.0101) and small-worldness (σ) (P = 0.0168). Additionally, the HM group showed lower nodal centrality in the right Amygdala (P < 0.001, Bonferroni-corrected). Notably, there is an increase in functional connectivity (FC) between the saliency network (SN) and Sensorimotor Network (SMN) in the HM group, while the strength of FC between the basal ganglia is relatively weaker (P < 0.01). CONCLUSION: HM Patients exhibit reduced small-world characteristics in their brain networks, with significant drops in γ and σ values indicating weakened global interregional information transfer ability. Not only that, the topological properties of the amygdala nodes in HM patients significantly decline, indicating dysfunction within the brain network. In addition, there are abnormalities in the FC between the SN, SMN, and basal ganglia networks in HM patients, which is related to attention regulation, motor impairment, emotions, and cognitive performance. These findings may provide a new mechanism for central pathology in HM patients.


Subject(s)
Brain , Magnetic Resonance Imaging , Nerve Net , Humans , Male , Female , Adult , Magnetic Resonance Imaging/methods , Brain/physiopathology , Brain/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Young Adult , Brain Mapping/methods , Myopia, Degenerative/physiopathology , Rest/physiology
6.
Int J Ophthalmol ; 17(7): 1331-1336, 2024.
Article in English | MEDLINE | ID: mdl-39026899

ABSTRACT

AIM: To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair. METHODS: The three-dimensional (3D) model of orbital blowout fractures was reconstructed using Mimics21.0 software. The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software. The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software. The mechanical response of absorbable plates, with thicknesses of 0.6 and 1.2 mm, was modeled after their placement in the orbit. Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures. RESULTS: The finite element models of orbital blowout fracture and absorbable plate were successfully established. Finite element analysis (FEA) showed that when the Young's modulus of the absorbable plate decreases to 3.15 MPa, the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents, resulting in a maximum total deformation of approximately 3.3 mm. Conversely, when the absorbable plate was 1.2 mm thick, the overall maximum total deformation was around 0.4 mm. The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy. CONCLUSION: The biomechanical analysis observations in this study are largely consistent with the clinical situation. The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures.

7.
World J Clin Cases ; 12(17): 3105-3122, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38898844

ABSTRACT

BACKGROUND: Malancao (MLC) is a traditional Chinese medicine with a long history of utilization in treating ulcerative colitis (UC). Nevertheless, the precise molecular mechanisms underlying its efficacy remain elusive. This study leveraged ultra-high-performance liquid chromatography coupled with exactive mass spectrometry (UHPLC-QE-MS), network pharmacology, molecular docking (MD), and gene microarray analysis to discern the bioactive constituents and the potential mechanism of action of MLC in UC management. AIM: To determine the ingredients related to MLC for treatment of UC using multiple databases to obtain potential targets for fishing. METHODS: This research employs UHPLC-QE-MS for the identification of bioactive compounds present in MLC plant samples. Furthermore, the study integrates the identified MLC compound-related targets with publicly available databases to elucidate common drug disease targets. Additionally, the R programming language is utilized to predict the central targets and molecular pathways that MLC may impact in the treatment of UC. Finally, MD are conducted using AutoDock Vina software to assess the affinity of bioactive components to the main targets and confirm their therapeutic potential. RESULTS: Firstly, through a comprehensive analysis of UHPLC-QE-MS data and public database resources, we identified 146 drug-disease cross targets related to 11 bioactive components. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis highlighted that common disease drug targets are primarily involved in oxidative stress management, lipid metabolism, atherosclerosis, and other processes. They also affect AGE-RAGE and apoptosis signaling pathways. Secondly, by analyzing the differences in diseases, we identified key research targets. These core targets are related to 11 active substances, including active ingredients such as quercetin and luteolin. Finally, MD analysis revealed the stability of compound-protein binding, particularly between JUN-Luteolin, JUN-Quercetin, HSP90AA1-Wogonin, and HSP90AA1-Rhein. Therefore, this suggests that MLC may help alleviate intestinal inflammation in UC, restore abnormal lipid accumulation, and regulate the expression levels of core proteins in the intestine. CONCLUSION: The utilization of MLC has demonstrated notable therapeutic efficacy in the management of UC by means of the compound target interaction pathway. The amalgamation of botanical resources, metabolomics, natural products, MD, and gene chip technology presents a propitious methodology for investigating therapeutic targets of herbal medicines and discerning novel bioactive constituents.

8.
Front Cell Dev Biol ; 12: 1401917, 2024.
Article in English | MEDLINE | ID: mdl-38887522

ABSTRACT

Osseointegration commences with foreign body inflammation upon implant placement, where macrophages play a crucial role in the immune response. Subsequently, during the intermediate and late stages of osseointegration, mesenchymal stem cells (MSCs) migrate and initiate their osteogenic functions, while macrophages support MSCs in osteogenesis. The utilization of ferroelectric P(VDF-TrFE) covered ITO planar microelectrodes facilitated the simulation of various surface charge to investigate their effects on MSCs' osteogenic differentiation and macrophage polarization and the results indicated a parabolic increase in the promotional effect of both with the rise in piezoelectric coefficient. Furthermore, the surface charge with a piezoelectric coefficient of -18 exhibited the strongest influence on the promotion of M1 polarization of macrophages and the promotion of MSCs' osteogenic differentiation. The impact of macrophage polarization and MSC osteogenesis following the interaction of macrophages affected by surface charge and MSC was ultimately investigated. It was observed that macrophages affected by the surface charge of -18 piezoelectric coefficient still exerted the most profound induced osteogenic effect, validating the essential role of M1-type macrophages in the osteogenic differentiation of MSCs.

9.
ACS Omega ; 9(22): 23688-23702, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38854565

ABSTRACT

In China, both vanadium(V) and chromium(VI) are present in wastewater resulting from vanadate precipitation (AVP wastewater) and from leaching vanadium-chromium reduction slag. Addressing environmental preservation and the comprehensive utilization of metal resources necessitates the extraction and separation of V(V) and Cr(VI) from these mixed solutions. However, their separation is complicated by very similar physicochemical properties. This study establishes a method for the dynamic selective adsorption of V(V) from such mixtures. It evaluates the impact of various operating conditions in columns on dynamic adsorption behavior. This study examines the migration patterns of the mass transfer zone (MTZ) and forecasts its effective adsorption capacity through multivariate polynomial regression and a neural network (NN) model. The NN model's outcomes are notably more precise. Its analysis reveals that C 0 is the most critical factor, with Q and H following in importance. Furthermore, the dynamic properties were analyzed using two established models, Thomas and Klinkenberg, revealing that both intraparticle and liquid film diffusion influence the rates of exchange adsorption, with intraparticle diffusion being the more significant factor. Using 3 wt % sodium hydroxide as the eluent to elute V(V)-loaded resin at a flow rate of 4 mL/min resulted in a chromium concentration of less than 3 mg/L in the V(V) eluate, indicating high vanadium-chromium separation efficiency in this method. These findings offer theoretical insights and economic analysis data that are crucial for optimizing column operation processes.

10.
MedComm (2020) ; 5(6): e604, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840771

ABSTRACT

Tumor mutational burden (TMB) and T-cell receptor (TCR) might predict the response to immunotherapy in patients with non-small cell lung cancer (NSCLC). However, the predictive value of the combination of TMB and TCR was not clear. Targeted DNA and TCR sequencing were performed on tumor biopsy specimens. We combined TMB and TCR diversity into a TMB-and-TCR (TMR) score using logistic regression. In total, 38 patients with advanced NSCLC were divided into a discovery set (n = 17) and validation set (n = 21). A higher TMR score was associated with better response and longer progression-free survival to immunotherapy in both the discovery set and validation set. The performance of TMR score was confirmed in the two external validation cohorts of 225 NSCLC patients and 306 NSCLC patients. Tumors with higher TMR scores were more likely to combine with LRP1B gene mutation (p = 0.027) and top 1% CDR3 sequences (p = 0.001). Furthermore, LRP1B allele frequency was negatively correlated with the top 1% CDR3 sequences (r = -0.55, p = 0.033) and positively correlated with tumor shrinkage (r = 0.68, p = 0.007). The TMR score could serve as a potential predictive biomarker for the response to immunotherapy in advanced NSCLC.

11.
Food Funct ; 15(14): 7605-7618, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38938120

ABSTRACT

Gastrointestinal symptoms constitute a frequent complication in postoperative patients with valvular heart disease (VHD), impacting their postoperative recovery. Probiotics contribute to regulating human gut microbiota balance and alleviating postoperative gastrointestinal symptoms. Our objective involved assessing the potential of Bifidobacterium animalis subsp. lactis LPL-RH to alleviate postoperative gastrointestinal symptoms and expedite patient recovery. Adult patients diagnosed with VHD scheduled for valve surgery were enrolled. 110 patients were randomly divided into two groups and received LPL-RH or a placebo for 14 days. Gastrointestinal symptoms were evaluated using the Gastrointestinal Symptoms Questionnaire. An analysis of the time to recovery of bowel function and various postoperative variables was conducted in both study groups. Variations in the intestinal microbiota were detected via 16S rRNA sequencing. The study was completed by 105 participants, with 53 in the probiotic group and 52 in the placebo group. Compared to the placebo group, LPL-RH significantly reduced the total gastrointestinal symptom score after surgery (p = 0.004). Additionally, LPL-RH was found to significantly reduce abdominal pain (p = 0.001), bloating (p = 0.018), and constipation (p = 0.022) symptom scores. Furthermore, LPL-RH dramatically shortened the time to recovery of bowel function (p = 0.017). Moreover, LPL-RH administration significantly enhanced patients' postoperative nutrition indexes (red blood cell counts, hemoglobin level, p < 0.05). Microbiome analysis showed that the composition and diversity of the postoperative intestinal microbiota differed between the probiotic and placebo groups. No adverse incidents associated with probiotics were documented, emphasizing their safety. This study initially discovered that oral B. animalis subsp. lactis LPL-RH can assist in regulating intestinal microbiota balance, alleviating gastrointestinal symptoms, promoting intestinal function recovery, and enhancing nutrition indexes in patients with VHD after surgery. Regulating the intestinal microbiota may represent a potential mechanism for LPL-RH to exert clinical benefits.


Subject(s)
Bifidobacterium animalis , Gastrointestinal Microbiome , Heart Valve Diseases , Probiotics , Humans , Gastrointestinal Microbiome/drug effects , Male , Female , Probiotics/therapeutic use , Probiotics/administration & dosage , Probiotics/pharmacology , Middle Aged , Heart Valve Diseases/surgery , Adult , Postoperative Complications/microbiology , Aged , Gastrointestinal Diseases , Double-Blind Method
12.
Yi Chuan ; 46(6): 452-465, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38886149

ABSTRACT

LIN28A and its homolog LIN28B are highly conserved RNA-binding proteins that play important roles in early embryonic development, somatic cell reprogramming, metabolism and tumorigenesis. LIN28A/B are highly expressed in a variety of malignant tumors such as breast cancer. They play important roles in the initiation, maintenance, and metastasis of tumors and are associated with poor prognosis. Previous studies have shown that the main regulatory mechanisms of LIN28A/B include let-7s dependent ways and let-7s independent ways, such as directly targeting mRNA. In this review, we summarize the function and molecular regulatory mechanisms of LIN28A/B in malignant tumors such as liver cancer, breast cancer and colorectal cancer, in order to provide references for further exploring the function and mechanism of LIN28A/B and their possible roles in clinical applications.


Subject(s)
Neoplasms , RNA-Binding Proteins , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Animals , Disease Progression , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics
13.
Molecules ; 29(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38930920

ABSTRACT

A promising method was established for the determination of nine halobenzoquinones (HBQs) in potable water by membrane solid-phase extraction (MSPE) pretreatment and the liquid chromatography-mass spectrometry (LC-MS) method. A 500 mL water sample was taken for enrichment by the SDB-RPS membrane, which was previously activated by methanol and ultrapure water. The sample was eluted with methanol and re-dissolved with the initial mobile phase after nitrogen blowing. Then, it was detected in negative ion mode using the working curve, and HBQs were quantified by the external standard method. The linearity was satisfactory in the concentration range of 4-1000 ng/L, with correlation coefficients of 0.9963~0.9994. The recoveries were 73.5~126.6% at three spiked levels, with relative standard deviations (RSDs) of 6.8~15.5%. The limits of detection (LOD, S/N = 3) values were 0.1~0.7 ng/L. The results demonstrate that the MSPE-LC-MS method is reliable, rapid, and sensitive for the simultaneous analysis of nine HBPs in potable water.


Subject(s)
Benzoquinones , Drinking Water , Solid Phase Extraction , Solid Phase Extraction/methods , Chromatography, Liquid/methods , Benzoquinones/chemistry , Benzoquinones/analysis , Drinking Water/analysis , Drinking Water/chemistry , Mass Spectrometry/methods , Limit of Detection , Water Pollutants, Chemical/analysis , Liquid Chromatography-Mass Spectrometry
14.
Nat Commun ; 15(1): 4894, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849338

ABSTRACT

Synthetic biology applications require finely tuned gene expression, often mediated by synthetic transcription factors (sTFs) compatible with the human genome and transcriptional regulation mechanisms. While various DNA-binding and activation domains have been developed for different applications, advanced artificially controllable sTFs with improved regulatory capabilities are required for increasingly sophisticated applications. Here, in mammalian cells and mice, we validate the transactivator function and homo-/heterodimerization activity of the plant-derived phytochrome chaperone proteins, FHY1 and FHL. Our results demonstrate that FHY1/FHL form a photosensing transcriptional regulation complex (PTRC) through interaction with the phytochrome, ΔPhyA, that can toggle between active and inactive states through exposure to red or far-red light, respectively. Exploiting this capability, we develop a light-switchable platform that allows for orthogonal, modular, and tunable control of gene transcription, and incorporate it into a PTRC-controlled CRISPRa system (PTRCdcas) to modulate endogenous gene expression. We then integrate the PTRC with small molecule- or blue light-inducible regulatory modules to construct a variety of highly tunable systems that allow rapid and reversible control of transcriptional regulation in vitro and in vivo. Validation and deployment of these plant-derived phytochrome chaperone proteins in a PTRC platform have produced a versatile, powerful tool for advanced research and biomedical engineering applications.


Subject(s)
Light , Molecular Chaperones , Phytochrome , Animals , Humans , Mice , Phytochrome/metabolism , Phytochrome/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Gene Expression Regulation/radiation effects , Transcription, Genetic/radiation effects , HEK293 Cells , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
15.
Science ; 384(6701): 1220-1227, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38753766

ABSTRACT

Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an adeno-associated virus (AAV) capsid, BI-hTFR1, that binds human transferrin receptor (TfR1), a protein expressed on the blood-brain barrier. BI-hTFR1 was actively transported across human brain endothelial cells and, relative to AAV9, provided 40 to 50 times greater reporter expression in the CNS of human TFRC knockin mice. The enhanced tropism was CNS-specific and absent in wild-type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared with AAV9. These findings establish BI-hTFR1 as a potential vector for human CNS gene therapy.


Subject(s)
Antigens, CD , Brain , Capsid , Gene Transfer Techniques , Genetic Vectors , Glucosylceramidase , Receptors, Transferrin , Animals , Humans , Mice , Antigens, CD/metabolism , Antigens, CD/genetics , Blood-Brain Barrier/metabolism , Brain/metabolism , Capsid/metabolism , Capsid Proteins/metabolism , Capsid Proteins/genetics , Dependovirus , Endothelial Cells/metabolism , Gene Knock-In Techniques , Genetic Therapy , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Glucosylceramidase/genetics , Gaucher Disease/genetics , Gaucher Disease/therapy , Parkinson Disease/genetics , Parkinson Disease/therapy
16.
Arthritis Res Ther ; 26(1): 110, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807248

ABSTRACT

BACKGROUND: Diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) provide more comprehensive and informative perspective on microstructural alterations of cerebral white matter (WM) than single-shell diffusion tensor imaging (DTI), especially in the detection of crossing fiber. However, studies on systemic lupus erythematosus patients without neuropsychiatric symptoms (non-NPSLE patients) using multi-shell diffusion imaging remain scarce. METHODS: Totally 49 non-NPSLE patients and 41 age-, sex-, and education-matched healthy controls underwent multi-shell diffusion magnetic resonance imaging. Totally 10 diffusion metrics based on DKI (fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, mean kurtosis, axial kurtosis and radial kurtosis) and NODDI (neurite density index, orientation dispersion index and volume fraction of the isotropic diffusion compartment) were evaluated. Tract-based spatial statistics (TBSS) and atlas-based region-of-interest (ROI) analyses were performed to determine group differences in brain WM microstructure. The associations of multi-shell diffusion metrics with clinical indicators were determined for further investigation. RESULTS: TBSS analysis revealed reduced FA, AD and RK and increased ODI in the WM of non-NPSLE patients (P < 0.05, family-wise error corrected), and ODI showed the best discriminative ability. Atlas-based ROI analysis found increased ODI values in anterior thalamic radiation (ATR), inferior frontal-occipital fasciculus (IFOF), forceps major (F_major), forceps minor (F_minor) and uncinate fasciculus (UF) in non-NPSLE patients, and the right ATR showed the best discriminative ability. ODI in the F_major was positively correlated to C3. CONCLUSION: This study suggested that DKI and NODDI metrics can complementarily detect WM abnormalities in non-NPSLE patients and revealed ODI as a more sensitive and specific biomarker than DKI, guiding further understanding of the pathophysiological mechanism of normal-appearing WM injury in SLE.


Subject(s)
Diffusion Tensor Imaging , Lupus Erythematosus, Systemic , White Matter , Humans , Female , White Matter/diagnostic imaging , White Matter/pathology , Male , Adult , Lupus Erythematosus, Systemic/diagnostic imaging , Diffusion Tensor Imaging/methods , Middle Aged , Diffusion Magnetic Resonance Imaging/methods , Young Adult , Brain/diagnostic imaging , Brain/pathology
17.
Brain Sci ; 14(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38790422

ABSTRACT

The ability to inhibit conflicting information is pivotal in the dynamic and high-speed context of fast-ball sports. However, the behavioral and electrophysiological characteristics underlying the cognitive inhibition processes associated with table tennis expertise remain unexplored. This study aims to bridge these research gaps by utilizing the color-word Stroop task and the spatial Stroop task alongside event-related potential (ERP) measurements to investigate domain-general and domain-specific cognitive inhibition among table tennis athletes. The study involved a total of 40 participants, including 20 table tennis athletes (11 males and 9 females; mean age 20.75 years) and 20 nonathletes (9 males and 11 females; mean age 19.80 years). The group differences in the Stroop effect on behavioral outcomes and ERP amplitudes were compared within each task, respectively. In the color-word Stroop tasks, athletes exhibited smaller incongruent-related negative potential amplitudes (Ninc; 300-400 ms; p = 0.036) and a diminished Stroop effect on late sustained potential amplitudes (LSP; 500-650 ms; p = 0.028) than nonathletes, although no significant differences were observed in behavioral outcomes (p > 0.05). Conversely, in the spatial Stroop tasks, athletes not only responded more swiftly but also exhibited reduced Stroop effects on both LSP amplitudes (350-500 ms; p = 0.004) and reaction times (p = 0.002) relative to nonathletes. These findings suggest that table tennis athletes excel in cognitive inhibition in the context of both domain-general and domain-specific tasks, particularly exhibiting enhanced performance in tasks that are closely aligned with the demands of their sport. Our results support the neural efficiency hypothesis and improve our understanding of the interactions between cognitive functions and table tennis expertise.

18.
Antioxidants (Basel) ; 13(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38790676

ABSTRACT

Protein posttranslational modifications are important factors that mediate the fine regulation of signaling molecules. O-linked ß-N-acetylglucosamine-modification (O-GlcNAcylation) is a monosaccharide modification on N-acetylglucosamine linked to the hydroxyl terminus of serine and threonine of proteins. O-GlcNAcylation is responsive to cellular stress as a reversible and posttranslational modification of nuclear, mitochondrial and cytoplasmic proteins. Mitochondrial proteins are the main targets of O-GlcNAcylation and O-GlcNAcylation is a key regulator of mitochondrial homeostasis by directly regulating the mitochondrial proteome or protein activity and function. Disruption of O-GlcNAcylation is closely related to mitochondrial dysfunction. More importantly, the O-GlcNAcylation of cardiac proteins has been proven to be protective or harmful to cardiac function. Mitochondrial homeostasis is crucial for cardiac contractile function and myocardial cell metabolism, and the imbalance of mitochondrial homeostasis plays a crucial role in the pathogenesis of cardiovascular diseases (CVDs). In this review, we will focus on the interactions between protein O-GlcNAcylation and mitochondrial homeostasis and provide insights on the role of mitochondrial protein O-GlcNAcylation in CVDs.

19.
Article in English | MEDLINE | ID: mdl-38771682

ABSTRACT

Gesture recognition has emerged as a significant research domain in computer vision and human-computer interaction. One of the key challenges in gesture recognition is how to select the most useful channels that can effectively represent gesture movements. In this study, we have developed a channel selection algorithm that determines the number and placement of sensors that are critical to gesture classification. To validate this algorithm, we constructed a Force Myography (FMG)-based signal acquisition system. The algorithm considers each sensor as a distinct channel, with the most effective channel combinations and recognition accuracy determined through assessing the correlation between each channel and the target gesture, as well as the redundant correlation between different channels. The database was created by collecting experimental data from 10 healthy individuals who wore 16 sensors to perform 13 unique hand gestures. The results indicate that the average number of channels across the 10 participants was 3, corresponding to an 75% decrease in the initial channel count, with an average recognition accuracy of 94.46%. This outperforms four widely adopted feature selection algorithms, including Relief-F, mRMR, CFS, and ILFS. Moreover, we have established a universal model for the position of gesture measurement points and verified it with an additional five participants, resulting in an average recognition accuracy of 96.3%. This study provides a sound basis for identifying the optimal and minimum number and location of channels on the forearm and designing specialized arm rings with unique shapes.


Subject(s)
Algorithms , Gestures , Pattern Recognition, Automated , Humans , Male , Female , Adult , Pattern Recognition, Automated/methods , Young Adult , Myography/methods , Hand/physiology , Healthy Volunteers , Reproducibility of Results
20.
Transl Lung Cancer Res ; 13(4): 875-884, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38736500

ABSTRACT

Background: Somatic mutations in epidermal growth factor receptor (EGFR) exon 18 are classified as uncommon or rare mutations in non-small cell lung cancer (NSCLC), in this context, other than G719X or E709X exon 18 mutations are even more rare and heterogeneous. In such scenario, first line treatment options are still debated. The aim of this study was to investigate the response of NSCLC patients harboring very rare exon 18 mutations to EGFR tyrosine kinase inhibitors (EGFR-TKIs). Methods: This retrospective descriptive study included 105 patients with NSCLC harboring mutations in EGFR exon 18 diagnosed at West China Hospital. The clinical response to EGFR-TKIs was evaluated according to different classifications of mutations in 45 NSCLC patients: 39 harboring G719X or E709X mutations and 6 harboring very rare mutations in EGFR exon 18. Results: Among 105 patients, 84% (88/105) harbored rare mutations in EGFR exon 18, including G719X and E709X mutations. The remaining 16% (17/105) had very rare mutations in EGFR exon 18, including E709_710delinsX and G724S. For the subsequent efficacy analysis of EGFR-TKI in 45 NSCLC patients, patients harboring very rare mutations achieved a favorable disease control rate (DCR) of 100% and had a median progression-free survival (PFS) of 17.2 months, which was not significantly different compared to patients harboring G719X or E709X (P=0.59). Conclusions: EGFR-TKIs showed great efficacy in terms of responses and survival in patients harboring exon 18 EGFR rare mutations. This may justify the use of targeted therapies as a potential treatment strategy for these patients.

SELECTION OF CITATIONS
SEARCH DETAIL