Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Adv Sci (Weinh) ; : e2309185, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741387

ABSTRACT

Quasi-2D perovskite quantum wells are increasingly recognized as promising candidates for direct-conversion X-ray detection. However, the fabrication of oriented and uniformly thick quasi-2D perovskite films, crucial for effective high-energy X-ray detection, is hindered by the inherent challenges of preferential crystallization at the gas-liquid interface, resulting in poor film quality. In addressing this limitation, a carbonyl array-synergized crystallization (CSC) strategy is employed for the fabrication of thick films of a quasi-2D Ruddlesden-Popper (RP) phase perovskite, specifically PEA2MA4Pb5I16. The CSC strategy involves incorporating two forms of carbonyls in the perovskite precursor, generating large and dense intermediates. This design reduces the nucleation rate at the gas-liquid interface, enhances the binding energies of Pb2+ at (202) and (111) planes, and passivates ion vacancy defects. Consequently, the construction of high-quality thick films of PEA2MA4Pb5I16 RP perovskite quantum wells is achieved and characterized by vertical orientation and a pure well-width distribution. The corresponding PEA2MA4Pb5I16 RP perovskite X-ray detectors exhibit multi-dimensional advantages in performance compared to previous approaches and commercially available a-Se detectors. This CSC strategy promotes 2D perovskites as a candidate for next-generation large-area flat-panel X-ray detection systems.

2.
J Colloid Interface Sci ; 669: 95-103, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38705116

ABSTRACT

Developing a high-activity and low-cost catalyst to reduce the anodic overpotential is essential for hydrogen production from water splitting. In this work, a hetero-structured Co7Fe3/Mo2C@C catalyst has been developed to efficiently catalyze oxygen evolution reaction (OER), the overpotential (ƞ10) of Co7Fe3/Mo2C@C-catalyzed OER with current density of 10 mA/cm2 is about 254 mV, substantially lower than the counterparts of Co7Fe3@C-catalyzed OER (ƞ10, 308 mV) and Mo2C@C-catalyzed OER (ƞ10, 439 mV), close to that of OER catalyzed by commercial RuO2. The mechanistic studies reveal that the distinct electron transfer across the Co7Fe3/Mo2C interface results in electron-deficient Co7Fe3, which has been identified as the highly active catalytic sites. Density functional theory (DFT) calculations manifest that Mo2C induces a distinct decrease in electron density on Co7Fe3 and upgrades the d-band centers of Co and Fe in Co7Fe3 towards Fermi energy level, thus substantially lowering the energy barrier of the rate-determining reaction step and conferring significantly improved OER activity on the Co7Fe3/Mo2C@C catalyst.

3.
Anal Chim Acta ; 1297: 342372, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38438241

ABSTRACT

BACKGROUND: Suppressors with different dead volumes are required to match different suppressed ion chromatography systems. Especially for suppressed open tubular ion chromatography (SOTIC), the dead volume is a critical parameter. Both connection tubes between open tubular (OT) columns and suppressors and the dead volumes of the suppressors should be as short/small as possible to minimize peak dispersion. Suppressors with different dead volumes are required to match the various suppressed ion chromatography systems that operate at low flow rates 20-200 nL/min. RESULTS: We describe three designs of on-column capillary suppressors for SOTIC: (A) on-column electrodialytic suppressor prepared by making small cracks on the cycloolefin polymer (COP) capillary at targeted locations, (B) on-column electrodialytic suppressor built on a polyether ether ketone (PEEK) capillary by removing the wall materials at target locations, (C) on-column chemical suppressor based on a single cut on a PEEK capillary at a targeted location a single cut on a PEEK capillary at a targeted location. The on-column electrodialytic suppressors work in two different modes with suppression voltage applied in co-current and counter-current direction to the eluent flow. Because of very narrow column inner diameter (i.d.), up to several hundred volts were required to suppress the hydroxide eluent, but it was found the there was a >90% loss of analytes in the suppressor accompanied with a high noise level after on-column electrodialytic suppression. Theoretical analysis reveals that high suppression voltage significantly affects the retention of specific analytes by electromigration. Further analysis indicated that the electrodialytic on-column suppressor in co-current mode would behave totally different from traditional suppressors. The on-column chemical suppression, with minimum dead volume of 0.27 nL, provides fairly well suppression of low hydroxide eluent without analyte loss in the suppressor. In design C, an efficiency of 47000 ± 1800 plates/m for Cl-, corresponding to a peak volume of 17.9 ± 0.7 nL, was obtained when separating five anion mixture (0.5 mM each) in the 25 µm i.d. AS18 latex coated PEEK OT column with an injection of 7.3 nL. Theoretical calculation revealed that a column efficiency loss of ≤3% would result in a cylindrical chemical suppression channel and thus it is taken as the acceptable dispersion contribution originating from the on-column chemical suppressor. SIGNIFICANCE: Different on-column suppressors have been designed on OT columns with i.d.s less than 30 µm. Two electrodialytic on-column suppressor designs with eluent flow parallel to the direction of electric field were proposed and tested. The eluent flow rate, analytes' retention behavior, resistance of suppression channel, current-voltage relationship, and working principles in both co-current and counter-current were experimentally investigated and comprehensively discussed. It was found that although the on-column electrodialytic suppressions (Design A and B) are not feasible in practice, the electrodialytic on-column suppressor on co-current mode has a potential of being used as an enriching capillary column for analyte ions. Design C provides fairly well chemical suppression. Theoretical calculation indicates that the loss of column efficiency can be controlled within 3%.

4.
Plants (Basel) ; 13(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475485

ABSTRACT

Water scarcity constrains the sustainable development of Chinese agriculture, and deficit irrigation as a new irrigation technology can effectively alleviate the problems of water scarcity and water use inefficiency in agriculture. In this study, the drip irrigation cotton field under film in Xinjiang was taken as the research object. Meta-analysis and machine learning were used to quantitatively analyze the effects of different farm management practices, climate, and soil conditions on cotton yield and water use efficiency under deficit irrigation, to investigate the importance of the effects of different factors on cotton yield and water use efficiency, and to formulate appropriate optimization strategies. The results showed that deficit irrigation significantly increased cotton water use efficiency (7.39%) but decreased cotton yield (-15.00%) compared with full irrigation. All three deficit irrigation levels (80~100% FI, 60~80% FI, and 40~60% FI; FI: full irrigation) showed a significant decrease in cotton yield and a significant increase in water use efficiency. Under deficit irrigation, cotton yield reduction was the smallest and cotton water use efficiency increased the most when planted with one film, two tubes, a six-row cropping pattern, an irrigation frequency ≥10 times, a nitrogen application of 300~400 kg·ha-1, and a crop density ≥240,000 per hectare, and planted with the Xinluzhong series of cotton varieties; deficit irrigation in areas with average annual temperature >10 °C, annual evapotranspiration >2000 mm, annual precipitation <60 mm, and with loam, sandy soil had the least inhibition of cotton yield and the greatest increase in cotton water use efficiency. The results of the random forest showed that the irrigation amount and nitrogen application had the greatest influence on cotton yield and water use efficiency. Rational irrigation based on optimal management practices under conditions of irrigation not less than 90% FI is expected to achieve a win-win situation for both cotton yield and water use efficiency. The above results can provide the best strategy for deficit irrigation and efficient water use in drip irrigation cotton under film in arid areas.

5.
ACS Appl Mater Interfaces ; 16(5): 6113-6121, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38270060

ABSTRACT

Direct X-ray detectors represent a transformative technology in the realm of radiography and imaging. The double halide-based perovskite cesium silver bismuth bromide (Cs2AgBiBr6) has emerged as a promising material for use in direct X-ray imaging, owing to its nontoxic composition, strong X-ray absorption, decent charge mobility lifetime product (µτ), and low-cost preparation. However, formidable issues related to scalability and ion migration, stemming from intrinsic factors such as halogen vacancies and grain boundaries, have presented significant impediments. These issues have been associated with substantial noise, baseline instability, and a curtailment of detection performance. In response to these multifaceted challenges, we propose a slurry-based in situ treatment technique for fabricating robust Cs2AgBiBr6 thick films. This novel approach adeptly mitigates halogen vacancies, actively passivates grain boundaries, and concurrently elevates the ion migration activation energy, thus effectively suppressing ion migration. Consequently, the obtained X-ray detector exhibits excellent operating stability with minimal signal drift of 8.5 × 10-9 nA cm-1 s-1 V-1 and achieves a remarkable 385% increase in sensitivity with a limit of detection as low as 7.8 nGyair s-1. These results mark a significant step toward the development of high-performance and long-lasting lead-free perovskite direct X-ray detectors.

6.
Chemosphere ; 349: 140915, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070611

ABSTRACT

This study investigated the application of a natural plant polyphenol, gallic acid (GA) to form complex with iron to promote the redox cycle of Fe(III)/Fe(II) under neutral initial pH conditions in the electrochemical (EC) system for activation of peroxymonosulfate (PMS) to efficiently degrade carbamazepine (CBZ). Results demonstrated that the synergistic effects of GA and EC significantly improved the removal efficiency, and the EC/GA/Fe(III)/PMS system effectively removed 100% of CBZ within a wide initial pH range of 3.0-7.0. The optimum stoichiometric ratio of GA to Fe(III) was found as 2:1. Investigations including quenching experiment, chemical probe analysis, and electron paramagnetic resonance (EPR) analysis were conducted to identify the primary reaction radicals as •OH, SO4•-, along with the 1O2 and Fe(IV). In the EC/GA/Fe(III)/PMS system, the synergistic effect of GA and electrochemistry led to a remarkable enhancement in the generation of •OH. Furthermore, the complexation reduction mechanism of GA and Fe(III) was proposed based on experimental and instrumental analyses, which demonstrated that the semi-quinone products of GA were the main substances promoting the Fe(III)/Fe(II) cycle. Mass spectrometry results showed that CBZ generated 27 byproducts during degradation, with formic acid as the main product of GA. The degradation efficiency of the EC/GA/Fe(III)/PMS system remained stable and excellent, exhibiting remarkable performance in the presence of various inorganic anions, including Cl- and NO3-, as well as naturally occurring organic compounds such as fulvic acid (FA). Overall results indicated that the EC/GA/Fe(III)/PMS system can be applied to effectively treat practical wastewater treatment without requirement of pH adjustment.


Subject(s)
Ferric Compounds , Water Pollutants, Chemical , Gallic Acid , Gas Chromatography-Mass Spectrometry , Water Pollutants, Chemical/analysis , Peroxides/chemistry , Carbamazepine/chemistry , Ferrous Compounds , Electricity
7.
Plant Physiol ; 194(3): 1779-1793, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38039157

ABSTRACT

During initial stages of microbial invasion, the extracellular space (apoplast) of plant cells is a vital battleground between plants and pathogens. The oomycete plant pathogens secrete an array of apoplastic carbohydrate active enzymes, which are central molecules for understanding the complex plant-oomycete interactions. Among them, pectin acetylesterase (PAE) plays a critical role in the pathogenesis of plant pathogens including bacteria, fungi, and oomycetes. Here, we demonstrated that Peronophythora litchii (syn. Phytophthora litchii) PlPAE5 suppresses litchi (Litchi chinensis) plant immunity by interacting with litchi lipid transfer protein 1 (LcLTP1). The LcLTP1-binding activity and virulence function of PlPAE5 depend on its PAE domain but not on its PAE activity. The high expression of LcLTP1 enhances plant resistance to oomycete and fungal pathogens, and this disease resistance depends on BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and Suppressor of BIR1 (SOBIR1) in Nicotiana benthamiana. LcLTP1 activates the plant salicylic acid (SA) signaling pathway, while PlPAE5 subverts the LcLTP1-mediated SA signaling pathway by destabilizing LcLTP1. Conclusively, this study reports a virulence mechanism of oomycete PAE suppressing plant LTP-mediated SA immune signaling and will be instrumental for boosting plant resistance breeding.


Subject(s)
Carrier Proteins , Esterases , Litchi , Phytophthora , Plant Breeding , Signal Transduction
8.
J Chromatogr A ; 1711: 464464, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37871504

ABSTRACT

We report a battery powered non-suppressed open tubular ion chromatograph (NSOTIC) that weighs less than 3 kg with on-board rechargeable lithium-ion batteries that provide power for 18 h of operation. It is contained in an aluminum case measuring 30 × 25 × 16 cm. Separation relies on open tubular (OT) chromatographic columns which eliminate the need for high pressure pumps, drastically reducing weight and complexity. Eluent consumption is less than 100 µL per separation. Eluent is supplied from a pressurized vessel via a voltage-controlled electronic pressure controller. Flow rates are typically <200 nL/min which allows a single 16-20 g gas cartridge to perform hundreds of separations. Two anions, chloride and nitrate, in Atacama soil samples were field determined by running the portable NSOTIC. More samples were lab analyzed by commercial IC and IC/MS-MS (only perchlorate due to its low concentration level). To demonstrate the feasibility of running NSOTIC on sample analysis, samples were tested by both non-portable and portable NSOTIC.


Subject(s)
Chromatography , Nitrates , Anions/analysis , Organic Chemicals , Chlorides , Chromatography, Ion Exchange
9.
Plant Biotechnol J ; 21(10): 2002-2018, 2023 10.
Article in English | MEDLINE | ID: mdl-37392407

ABSTRACT

Heterozygous alleles are widespread in outcrossing and clonally propagated woody plants. The variation in heterozygosity that underlies population adaptive evolution and phenotypic variation, however, remains largely unknown. Here, we describe a de novo chromosome-level genome assembly of Populus tomentosa, an economic and ecologically important native tree in northern China. By resequencing 302 natural accessions, we determined that the South subpopulation (Pop_S) encompasses the ancestral strains of P. tomentosa, while the Northwest subpopulation (Pop_NW) and Northeast subpopulation (Pop_NE) experienced different selection pressures during population evolution, resulting in significant population differentiation and a decrease in the extent of heterozygosity. Analysis of heterozygous selective sweep regions (HSSR) suggested that selection for lower heterozygosity contributed to the local adaptation of P. tomentosa by dwindling gene expression and genetic load in the Pop_NW and Pop_NE subpopulations. Genome-wide association studies (GWAS) revealed that 88 single nucleotide polymorphisms (SNPs) within 63 genes are associated with nine wood composition traits. Among them, the selection for the homozygous AA allele in PtoARF8 is associated with reductions in cellulose and hemicellulose contents by attenuating PtoARF8 expression, and the increase in lignin content is attributable to the selection for decreases in exon heterozygosity in PtoLOX3 during adaptive evolution of natural populations. This study provides novel insights into allelic variations in heterozygosity associated with adaptive evolution of P. tomentosa in response to the local environment and identifies a series of key genes for wood component traits, thereby facilitating genomic-based breeding of important traits in perennial woody plants.


Subject(s)
Populus , Alleles , Populus/genetics , Populus/metabolism , Wood/genetics , Wood/metabolism , Genome-Wide Association Study , Plant Breeding , Polymorphism, Single Nucleotide/genetics , Genomics
10.
J Hazard Mater ; 458: 131952, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37399723

ABSTRACT

The rise of emerging pollutants in the current environment and requirements of trace analysis in complex substrates pose challenges to modern analytical techniques. Ion chromatography coupled with mass spectrometry (IC-MS) is the preferred tool for analyzing emerging pollutants due to its excellent separation ability for polar and ionic compounds with small molecular weight and high detection sensitivity and selectivity. This paper reviews the progress of sample preparation and ion-exchange IC-MS methods in the analysis of several major categories of environmental polar and ionic pollutants including perchlorate, inorganic and organic phosphorus compounds, metalloids and heavy metals, polar pesticides, and disinfection by-products in past two decades. The comparison of various methods to reduce the influence of matrix effect and improve the accuracy and sensitivity of analysis are emphasized throughout the process from sample preparation to instrumental analysis. Furthermore, the human health risks of these pollutants in the environment with natural concentration levels in different environmental medias are also briefly discussed to raise public attention. Finally, the future challenges of IC-MS for analysis of environmental pollutants are briefly discussed.

11.
J Chromatogr A ; 1706: 464231, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37517316

ABSTRACT

Ion chromatography (IC) plays a crucial role in urine analysis for diverse medical diagnoses. This paper reviews a comprehensive investigation into urine pretreatment techniques, as well as the design and development of IC systems for the measurement of various chemicals. Prior to analysis, urine samples commonly undergo pretreatment procedures such as dilution, filtration, purification, and concentration. These steps effectively eliminate interfering factors and facilitate the accurate and sensitive analysis of ultra-trace components. To separate and quantify different chemical elements or ions present in urine, a range of homemade or commercially available columns coupled with various detectors were employed. This study focuses on the analysis of chemicals such as heavy metals, halogens, pesticides, drugs, and other essential or toxic substances by IC methods.


Subject(s)
Chromatography , Metals, Heavy , Metals, Heavy/analysis , Halogens
12.
Front Plant Sci ; 13: 1069190, 2022.
Article in English | MEDLINE | ID: mdl-36578348

ABSTRACT

Introduction: Warming and drought brought about by climate change seriously harm sustainable agricultural production in southern Xinjiang. It is still unclear how irrigation can improve the ability of crops to cope with climate change. Methods: Therefore, in this study, we calibrated and validated the AquaCrop model using data collected in cotton production from 2017 to 2018. The model effectively simulated the growth, biomass, and yield of cotton plants at the experimental site under different warming and irrigation conditions. The meteorological data collected from 1987 to 2016 were used in a simulation to predict cotton production under 3 temperature scenarios (temperature increased by 0°C, 1°C, and 2°C) and 6 levels of irrigation (198, 264, 330, 396, 495, and 594 mm) to explain the modulating effect of plastic film mulching-coupled drip irrigation on cotton production in terms of increasing temperatures under climate change in southern Xinjiang. Results and discussion: Model prediction showed that an increase in temperature reduced cotton yield under a low irrigation level, while an increase in irrigation mitigated the impact of climate change on cotton yield. An increase of 1°C did not significantly reduce cotton yield at 198-330 mm of irrigation. Under a 2°C increase, 396-594 mm of irrigation was required to ensure plant growth and yield formation. Both aboveground biomass and yield increased with the rise in the irrigation level at the same temperature. High water use efficiency was achieved at 495 mm of irrigation without significant yield loss. Therefore, in the low-temperature scenario, it can be preferentially considered to achieve sustainable water use through water management, while in the high-temperature scenario innovative agricultural measures are required to avoid yield loss. Optimizing irrigation strategies can reduce warming-induced damage to crops under climate change.

13.
Front Microbiol ; 13: 984672, 2022.
Article in English | MEDLINE | ID: mdl-36160220

ABSTRACT

Oomycetes cause hundreds of destructive plant diseases, threatening agricultural production and food security. These fungus-like eukaryotes show multiple sporulation pattern including the production of sporangium, zoospore, chlamydospore and oospore, which are critical for their survival, dispersal and infection on hosts. Recently, genomic and genetic technologies have greatly promoted the study of molecular mechanism of sporulation in the genus Phytophthora and Peronophythora. In this paper, we characterize the types of asexual and sexual spores and review latest progress of these two genera. We summarize the genes encoding G protein, mitogen-activated protein kinase (MAPK) cascade, transcription factors, RNA-binding protein, autophagy-related proteins and so on, which function in the processes of sporangium production and cleavage, zoospore behaviors and oospore formation. Meanwhile, various molecular, chemical and electrical stimuli in zoospore behaviors are also discussed. Finally, with the molecular mechanism of sporulation in Phytophthora and Peronophythora is gradually being revealed, we propose some thoughts for the further research and provide the alternative strategy for plant protection against phytopathogenic oomycetes.

14.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35163762

ABSTRACT

Autophagy is ubiquitously present in eukaryotes. During this process, intracellular proteins and some waste organelles are transported into lysosomes or vacuoles for degradation, which can be reused by the cell to guarantee normal cellular metabolism. However, the function of autophagy-related (ATG) proteins in oomycetes is rarely known. In this study, we identified an autophagy-related gene, PlATG6a, encoding a 514-amino-acid protein in Peronophythora litchii, which is the most destructive pathogen of litchi. The transcriptional level of PlATG6a was relatively higher in mycelium, sporangia, zoospores and cysts. We generated PlATG6a knockout mutants using CRISPR/Cas9 technology. The P. litchii Δplatg6a mutants were significantly impaired in autophagy and vegetative growth. We further found that the Δplatg6a mutants displayed decreased branches of sporangiophore, leading to impaired sporangium production. PlATG6a is also involved in resistance to oxidative and salt stresses, but not in sexual reproduction. The transcription of peroxidase-encoding genes was down-regulated in Δplatg6a mutants, which is likely responsible for hypersensitivity to oxidative stress. Compared with the wild-type strain, the Δplatg6a mutants showed reduced virulence when inoculated on the litchi leaves using mycelia plugs. Overall, these results suggest a critical role for PlATG6a in autophagy, vegetative growth, sporangium production, sporangiophore development, zoospore release, pathogenesis and tolerance to salt and oxidative stresses in P. litchii.


Subject(s)
Beclin-1/genetics , Litchi/growth & development , Phytophthora/growth & development , Up-Regulation , Autophagy , CRISPR-Cas Systems , Gene Knockout Techniques , Litchi/parasitology , Mycelium/genetics , Mycelium/growth & development , Mycelium/pathogenicity , Oxidative Stress , Phytophthora/genetics , Phytophthora/pathogenicity , Plant Leaves/growth & development , Plant Leaves/parasitology , Reproduction, Asexual , Salt Tolerance , Virulence Factors/genetics
15.
Int J Mol Sci ; 22(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805371

ABSTRACT

As an evolutionarily conserved pathway, mitogen-activated protein kinase (MAPK) cascades function as the key signal transducers that convey information by protein phosphorylation. Here we identified PlMAPK2 as one of 14 predicted MAPKs encoding genes in the plant pathogenic oomycete Peronophythora litchii. PlMAPK2 is conserved in P.litchii and Phytophthora species. We found that PlMAPK2 was up-regulated in sporangium, zoospore, cyst, cyst germination and early stage of infection. We generated PlMAPK2 knockout mutants using the CRISPR/Cas9 method. Compared with wild-type strain, the PlMAPK2 mutants showed no significant difference in vegetative growth, oospore production and sensitivity to various abiotic stresses. However, the sporangium release was severely impaired. We further found that the cleavage of the cytoplasm into uninucleate zoospores was disrupted in the PlMAPK2 mutants, and this developmental phenotype was accompanied by reduction in the transcription levels of PlMAD1 and PlMYB1 genes. Meanwhile, the PlMAPK2 mutants exhibited lower laccase activity and reduced virulence to lychee leaves. Overall, this study identified a MAPK that is critical for zoosporogenesis by regulating the sporangial cleavage and pathogenicity of P.litchii, likely by regulating laccase activity.


Subject(s)
Litchi/metabolism , Mitogen-Activated Protein Kinases/metabolism , Oomycetes/pathogenicity , Plant Diseases , Litchi/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/metabolism , Virulence
16.
Anal Chim Acta ; 1143: 210-224, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33384120

ABSTRACT

This review summarizes the progress in open tubular ion chromatography (OTIC) over the period from 1981 to 2020. Although OTIC columns provide superior column efficiency, require very little sample volumes, and consume a minimum level of eluents compared to regular packed columns, not many reports can be found from the literature mainly due to the difficulties in the preparation of OTIC columns and the harsh system requirements, such as pL-nL injections and extremely small detection volumes. However, technical advances, e.g., capacitively coupled contactless conductivity detectors (C4Ds), hydroxide eluent compatible polymer-based OTIC columns, electrodialytic capillary suppressors, and nanovolume gas-free hydroxide eluent generators (EGs), have removed the obstacles to OTIC. As such, in this review, the author focused on the development of the key components in an OTIC system from the perspective of instrument development. A brief revisit of open tubular (OT) column theory is first presented, followed by a discussion of the system configuration and component development. Attention is given to the advances in the development of the suppressed open tubular ion chromatography (SOTIC) system.

17.
Chinese Journal of School Health ; (12): 207-210, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-873639

ABSTRACT

Objective@#To investigate nutritional quality of school lunch in some primary schools and middle schools in the Pearl River Delta, and to provide the scientific basis for improving the nutritional quality of students lunch and formulating scientific and effective interventions.@*Methods@#Five-day lunch meal survey by chemical analysis were conducted, and students lunch at school were recorded by meal review in three age groups from 8 primary and middle schools in the Pear River Delat area. The energy and nutrient content were obtained and compared with the reference intake of dietary nutrients of student.@*Results@#The average protein intake at lunch of all age groups had reached the recommended standard (80%-95%), the energy supply ratio of carbohydrate in the range of 38.3%-42.3%, the energy supply ratio of fat in 63% school meal exceeded the recommended standard. Vitamin A, vitamin B 1, vitamin B 2, calcium, iron and other nutrients were seriously inadequate; while sodium intake far exceeded the recommended standard.@*Conclusion@#The main nutrients of school lunch of primary and middle school in Pearl River Delta can basically meet the growth and development needs, but there are still some deficiency and unbalanced diet nutrient content which are lower than the recommended intake. It is recommended to strengthen nutrition education of catering enterprises and school to improve the scientific combination of diets.

18.
Sci Total Environ ; 742: 140597, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32629271

ABSTRACT

Polychlorinated biphenyls (PCBs) and halogen flame retardants (HFRs) are major pollutants in e-waste recycling area. High internal exposure levels of PCBs and HFRs are harmful to human thyroid hormone (TH) equilibrium. To examine their disrupting effects on TH, we conducted a study on children (n = 114) of an e-waste recycling and a control area in South China. Concentrations of PCBs, HFRs, and TH levels were determined in serum samples. TH related proteins and their corresponding gene were also monitored as markers of such disruption. Levels of these chemicals in the exposed group were much greater than those in the control group. Results of the linear regression and generalized additive model indicated the presence of close relationships between the internal exposure levels and the responses of TH related proteins, gene expression. More extensive exposure concentrations of these chemicals led to higher expression of iodothyronine deiodinase I and decreased the concentrations of thyroid-stimulating hormone, expression of TH receptor α, indicating the exertion of discrepant and even contrary influences on equilibrium of TH, and a compensation of these mechanisms may kept the homeostasis of TH. These results for children warrant further investigation on the health risks of PCBs and HFRs exposure in e-waste area.


Subject(s)
Electronic Waste/analysis , Flame Retardants , Polychlorinated Biphenyls/analysis , Child , China , Halogens , Humans , Proteins , Recycling , Thyroid Hormones
19.
Anal Chem ; 92(7): 5561-5568, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32138510

ABSTRACT

A gas-free KOH eluent generator (EG) with 210 nL of internal volume is described. It utilizes a two-membrane configuration where there is a single CEM layer on one side and a single BPM layer on the other side for use in open tubular ion chromatography systems with typical back pressures < 50 psi. At a flow rate of ∼190 nL/min, the 10-90% gradient rise time is 3.5 min. The device shows good linearity between applied current and concentration of KOH generated, which is stable over extended periods. The overall system reproducibility (that includes contributions from any changes in flow rate), as judged by the relative standard deviation (RSD) of the retention times of individual separated ions in repeat measurements (n = 6), ranged from <0.5% for isocratic to <1.2% for gradient elution schemes. Perceptible current flow and KOH production in the BPM-based EG begins at subelectrolytic applied voltages, prompting us to look more closely at exact field strength necessary for field-enhanced dissociation of water. An increase in the specific conductance of pure water is noticeable by a field strength of 105 V/m.

20.
Se Pu ; 38(4): 399-408, 2020 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-34213221

ABSTRACT

In recent years, significant progress has been made in the area of open tubular ion chromatography (OTIC). In particular, gradient OTIC has been realized through the development of hydroxide eluent-compatible OTIC columns. This review covers the preparation and characterization of different OTIC columns, ranging from the historic silica-based columns to the newly emerging polymer-based open tubular (OT) columns. The preparation of various OTIC stationary phases, from grafted to latex agglomerated and monolayer to multilayer phases, has been briefly introduced. The characterization of electrostatic latex agglomerated OTIC columns has been extensively discussed, e. g. fluorescent ion displacement chromatography, frontal displacement chromatography, and frontal reaction chromatography have been used to measure the capacities of OT columns, and the results are compared with the theoretical calculation values. The variable αiex, defined as the number of ion-exchange equivalents per unit surface area, is used as an indicator of the capacity of OT columns, to enable a straightforward comparison between OT columns having different inner diameters (i.d.). The newly introduced column capacity parameter, γiex, defined as the stationary phase capacity per unit liquid volume present, is used to investigate the relationship between packed and OT columns when using the same stationary phase. Methods for improving the column efficiency, such as decreasing the column diameter and/or increasing the column temperature, are presented. In addition, determination of the functionalization uniformity along an OT column by (a) separately measuring the capacities of two halves of the column, (b) measuring the retention factors for several ions in successive 10 cm segments of the column in multiple injections, and (c) measuring the retention variance of a single ion in different segments of the column from a single injection, is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...