Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Int J Biol Macromol ; : 135879, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39322154

ABSTRACT

The extensive use of tetracycline (TC) for disease control and the residuals in wastewater has resulted in the spread and accumulation of antibiotic resistance genes, posing a severe threat to the human health and environmental safety. To solve this problem, a series of double-network hydrogel beads based on sodium alginate and polyvinyl alcohol were constructed with the introduction of various surfactants to modulate the morphology. The results showed that the introduction of surfactants can modulate the surface morphology and internal structure, which can also regulate the adsorption ability of the hydrogel beads. The SDS-B beads with SDS as surfactant exhibited highest adsorption efficiency for removal of TC with a maximum adsorption capacity up to 121.6 mg/g, which possessed a resistance to various cations and humic acid. The adsorption mechanism revealed that the superior adsorption performance of the hydrogel beads was primarily attributed to hydrogen bonding, electrostatic attraction, and π-π EDA interactions. Adsorption kinetics demonstrated that the pseudo-second-order model fitted the adsorption process well and adsorption isotherm showed the adsorption of TC occurred through both chemical and physical interactions. Moreover, the adsorption efficiency remained approximately 87.5 % after three adsorption-desorption cycles, which may have potential application and practical value in TC adsorption.

2.
HERD ; : 19375867241276211, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248226

ABSTRACT

Objective: The aim of this study was to translate the Australian Environmental Assessment Tool (EAT) into Chinese and identify culturally specific characteristics in the Chinese context for adaptation. Background: In the context of dementia-specific care, the design of the environment is considered an influential factor in supporting and maintaining skills. However, despite the increasing number of individuals with dementia in China, there is currently no valid instrument available to systematically assess the quality of the physical environment in long-term care facilities (LTCFs). Methods: This study utilized a mixed-method procedure consisting of seven steps, including translation and adaptation. The study involved focus groups comprising an expert panel (n = 17) and potential users (n = 64) of the newly developed tool. Cross-cultural adaptation was performed through Chinese literature review and literature quality appraisal, field study, and expert committee review. Results: The final version of the China Environmental Assessment Tool (C-EAT) consisted of 10 key design principles and 64 items. The C-EAT was tested in four LTCFs in China and underwent two rounds of review by an expert panel. Conclusions: The C-EAT was deemed a suitable tool for assessing the environment and enhancing the living environments for individuals with dementia in LTCFs in China. In future research, field tests will be conducted to validate the C-EAT scale and modify the EAT-HC to enhance its applicability in China.

3.
Int J Nanomedicine ; 19: 9121-9143, 2024.
Article in English | MEDLINE | ID: mdl-39258004

ABSTRACT

Purpose: Erythrocytes and fibroblasts in the pancreatic cancer tumor microenvironment promote tumor cell growth and invasion by providing nutrients and promoting immunosuppression. Additionally, they form a barrier against the penetration of chemotherapeutic drugs. Therefore, the search for diversified tumor-targeting materials plays an essential role in solving the above problems. Methods: Physicochemical characterization of Graphene fluorescent nanoparticles (GFNPs) and nanomedicines were analyzed by transmission electron microscopy (TEM), elemental analyzers and ultraviolet fluorescence (UV/FL) spectrophotometer. Localization of GFNPs in cell and tissue sections imaged with laser confocal microscope, fluorescence scanner and small animal in vivo imager. Qualitative detection and quantitative detection of GFNPs and GFNPs-GEM were performed using High performance liquid chromatography (HPLC). Results: Based on the 3 nm average dimensions, GFNPs penetrate vascular endothelial cells and smooth muscle cells, achieve up to label 30% tumor cells and 60% cancer-associated fibroblasts (CAFs) cells, and accurately label mature red blood cells in the tumor microenvironment. In orthotopic transplanted pancreatic cancer models, the fluorescence intensity of GFNPs in tumors showed a positive correlation with the cycle size of tumor development. The differential spatial distribution of GFNPs in three typical clinical pancreatic cancer samples demonstrated their diagnostic potential. To mediate the excellent targeting properties of GFNPs, we synthesized a series of nanomedicines using popular chemotherapeutic drugs, in which complex of GFNPs and gemcitabine (GFNPs-GEM) possessed stability in vivo and exhibited effective reduction of tumor volume and fewer side effects. Conclusion: GFNPs with multiple targeting tumor microenvironments in pancreatic cancer possess diagnostic efficiency and therapeutic potential.


Subject(s)
Deoxycytidine , Gemcitabine , Graphite , Nanoparticles , Pancreatic Neoplasms , Tumor Microenvironment , Pancreatic Neoplasms/drug therapy , Animals , Nanoparticles/chemistry , Cell Line, Tumor , Humans , Mice , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Deoxycytidine/administration & dosage , Tumor Microenvironment/drug effects , Graphite/chemistry , Nanomedicine , Cancer-Associated Fibroblasts/drug effects , Disease Models, Animal
4.
ACS Nano ; 18(37): 25601-25613, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39213604

ABSTRACT

Enhancing proton storage in the zinc-ion battery cathode material of MnO2 holds promise in promoting its electrochemical performance by mitigating the intense Coulombic interaction between divalent zinc ions and the host structure. However, challenges persist in addressing the structural instability caused by Jahn-Teller effects and accurately modulating H+ intercalation in MnO2. Herein, the doping of high-electronegativity Sb with fully occupied d-orbital in MnO2 is reported. The Sb doping strategy engenders the formation of Mn-O-Sb path in the structure with a strong dipole polarization field, which facilitates the delocalization of eg orbital electron in Mn and thus mitigates the Jahn-Teller effects. Simultaneously, adjusting the level of Sb doping in MnO2 leads to modulation of the p-band center of O, optimizing its interaction with hydrogen and thereby enhancing proton storage. Consequently, MnO2 doped with 6% Sb exhibits commendable performance in both rate capability and cycling endurance, delivering 113 mAh g-1 at 2 A g-1 after 2000 cycles. This investigation underscores the crucial role of electronic structural engineering in elevating the electrochemical performance of cathode materials for zinc-ion batteries.

5.
Sensors (Basel) ; 24(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39123826

ABSTRACT

Finger vein recognition methods, as emerging biometric technologies, have attracted increasing attention in identity verification due to their high accuracy and live detection capabilities. However, as privacy protection awareness increases, traditional centralized finger vein recognition algorithms face privacy and security issues. Federated learning, a distributed training method that protects data privacy without sharing data across endpoints, is gradually being promoted and applied. Nevertheless, its performance is severely limited by heterogeneity among datasets. To address these issues, this paper proposes a dual-decoupling personalized federated learning framework for finger vein recognition (DDP-FedFV). The DDP-FedFV method combines generalization and personalization. In the first stage, the DDP-FedFV method implements a dual-decoupling mechanism involving model and feature decoupling to optimize feature representations and enhance the generalizability of the global model. In the second stage, the DDP-FedFV method implements a personalized weight aggregation method, federated personalization weight ratio reduction (FedPWRR), to optimize the parameter aggregation process based on data distribution information, thereby enhancing the personalization of the client models. To evaluate the performance of the DDP-FedFV method, theoretical analyses and experiments were conducted based on six public finger vein datasets. The experimental results indicate that the proposed algorithm outperforms centralized training models without increasing communication costs or privacy leakage risks.


Subject(s)
Algorithms , Fingers , Veins , Humans , Fingers/blood supply , Fingers/physiology , Veins/physiology , Machine Learning , Biometric Identification/methods
6.
Anal Chem ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140526

ABSTRACT

Developing an activity detection platform for hyaluronidase (HAase) is crucial for diagnosing and treating cancer. However, traditional detection of HAase is based on changes in the flow rate caused by viscosity or requires complex modifications and processing, which limits the detection accuracy and sensitivity. Herein, hyaluronic acid (HA)-modified mesoporous-based heterochannels (mesoporous carbon-doped γ-Fe2O3 nanoparticles/anodized aluminum oxide, MC-γ-Fe2O3/AAO) featuring ordered 3D transport frameworks and a photothermal property were developed for high performance HAase detection. The HA molecules on the surface of the mesoporous layer provide abundant active sites for HAase detection. An improved ionic current was realized after enzymatic hydrolysis reactions between HA and HAase due to enhanced surface charges and more hydrophilicity, leading to highly sensitive and accurate HAase detection. Notably, the detection performance can be further upgraded with the assistance of the photothermal property of γ-Fe2O3. An amplified detection current signal was achieved owing to a synergistic effect between ion currents and photoresponsive currents. A wide linear detection range from 1 to 50 U/mL and a low detection limit of 0.348 U/mL were obtained, achieving a 2% improvement under illumination. Importantly, the heterochannels have also been successfully applied for HAase detection in fetal bovine serum samples, manifesting considerable application prospects. This work provides a new strategy in constructing photoresponsive nanochannels with a photothermal property for a highly efficient biosensing platform.

7.
Foods ; 13(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38998478

ABSTRACT

The need to improve the physicochemical properties of sea buckthorn juice and the bioavailability of carotenoids is a major challenge for the field. The effects of different natural emulsifiers, such as medium-chain triglycerides (MCTs), tea saponins (TSs) and rhamnolipids (Rha), on the physical and chemical indexes of sea buckthorn juice were studied. The particle size of sea buckthorn juice and the carotenoids content were used as indicators for evaluation. The effects of different addition levels of MCT, Rha and TS on the bioavailability of carotenoids in sea buckthorn juice were investigated by simulating human in vitro digestion tests. The results showed that those emulsifiers, MCT, Rha and TS, can significantly reduce the particle size and particle size distribution of sea buckthorn juice, improve the color, increase the soluble solids content, turbidity and physical stability and protect the carotenoids from degradation. When the addition amount of Rha was 1.5%, the total carotenoids content (TCC) of sea buckthorn juice increased by 45.20%; when the addition amount of TS was 1.5%, the total carotenoids content (TCC) of sea buckthorn juice increased by 37.95%. Furthermore, the bioaccessibility of carotenoids was increased from 36.90 ± 2.57% to 54.23 ± 4.17% and 61.51 ± 4.65% through in vitro digestion by Rha and TS addition, respectively. However, the total carotenoids content (TCC) of sea buckthorn juice and bioaccessibility were not significantly different with the addition of MCT. In conclusion, the findings of this study demonstrate the potential of natural emulsifiers, such as MCT, Rha and TS, to significantly enhance the physicochemical properties and bioavailability of carotenoids in sea buckthorn juice, offering promising opportunities for the development of functional beverages with improved nutritional benefits.

8.
J Environ Radioact ; 278: 107490, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38950498

ABSTRACT

This study reports first results on uranium (236U), neptunium (237Np) and plutonium (239Pu and 240Pu) isotopes in shell samples (i.e. oyster, clam and scallop shells) from the coast of the South of China. The 240Pu/239Pu and 236U/238U atom ratios are used for source identification, and the 237Np/239Pu, 237Np/236U and 236U/239Pu non-isotopic atom ratios to study the relative bioaccumulation of Np, Pu and U during the shell formation. The obtained concentration levels are in the 104-106 atoms g-1 range in every case. Clear regional differences are observed in the case of the 240Pu/239Pu atom ratio, with average values lower along the coast of East China Sea (average 0.227 ± 0.120, n = 5) compared to the South China Sea (average 0.258 ± 0.018, n = 7), showing a possible influence of the Pu released at the Pacific Proving Ground nuclear test site. 236U/238U ( × 10-8) atom ratios range from 0.046 ± 0.009 to 0.524 ± 0.135, in agreement with the expected levels in surface seawater from the China Sea. 237Np/239Pu (average 4.1 ± 2.6, n = 13) and 237Np/236U ratios (average 14 ± 10, n = 13) in the oyster shells are clearly enhanced compared to the estimated one in the surface seawater, pointing out higher bioaccumulation of Np compared to Pu and U.


Subject(s)
Plutonium , Radiation Monitoring , Uranium , Water Pollutants, Radioactive , China , Plutonium/analysis , Water Pollutants, Radioactive/analysis , Animals , Uranium/analysis , Animal Shells/chemistry , Neptunium
9.
World Neurosurg ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053852

ABSTRACT

OBJECTIVE: To develop and validate a clinical-radiomics nomogram for predicting early ischemic stroke risk in patients who sustain a transient ischemic attack (TIA). METHODS: A retrospective training dataset (n = 76) and a prospective validation dataset (n = 34) of patients with TIA were studied. Image processing was performed using ITK-snap and Artificial Intelligent Kit. Radiomics features were selected in R. A nomogram predicting recurrent TIA/stroke in 90 days as a recurrent ischemic event was established. Model performance was assessed by computing the receiver operating characteristic curve and decision curve analysis (DCA). RESULTS: We found a higher proportion of diabetes and hypertension in the patients with recurrent TIA compared with the stable patients in both the training and validation datasets (P < 0.05). Recurrent patients had significantly higher ABCD2 scores and plaque scores compared to stable patients. ABCD2 score and necrotic/lipid core area were independent risk factors for recurrent ischemic events (odds ratio [OR], 2.75; 95% confidence interval [CI], 1.47-6.40; and OR, 1.20; 95% CI, 1.07-1.41, respectively). The radiomics model had area under the curve values of 0.737 (95% CI, 0.715-0.878) in the training dataset and 0.899 (95% CI, 0.706-0.936) in the validation dataset, which was superior to the ABCD2 score and plaque model for predicting stroke recurrence (P < 0.05). The nomogram predicting recurrent ischemic events was 0.923 (95% CI, 0.895-0.978) in the training dataset and 0.935 (95% CI, 0.830-0.959) in the validation dataset. DCA confirmed the clinical value of this nomogram. CONCLUSIONS: The nomogram, based on clinical ABCD2 score, carotid plaque components and radiomics score, shows good performance in predicting the risk of recurrent ischemic events in patients with TIA.

10.
Int J Biol Macromol ; 273(Pt 1): 133044, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862059

ABSTRACT

Membrane separation technology has emerged as a powerful tool to separate organic dyes from industrial wastewater. However, continuously selective separation of organic dyes with similar molecular weight remains challenging. Herein, we presented a pH-triggered membrane composed of polydopamine-decorated tunicate-derived cellulose nanofibers (PDA@TCNFs) for selective separation of organic dyes. Such self-supporting membranes with nanoporous structure were fabricated by facile vacuum-assisted filtration of PDA@TCNF suspension. The incorporation of polydopamine not only enhanced the stability of the membranes, but also endowed membranes with excellent pH sensitivity, facilitating the continuously selective separation of organic dyes. These pH-triggered PDA@TCNF membranes could selectively separate Methyl Orange (MO) and Rhodamine B (RB) from the MO/RB mixed solution by switching the pH values. The continuously selective separation of the MO/RB mixed solution was demonstrated, where both MO and RB recovery ratios maintained at ∼99 % during 50 repeated cycles. This work provides a new strategy to develop a pH-triggered sustainable nanocellulose-based membrane for continuously selective separation of mixed dyes.


Subject(s)
Cellulose , Coloring Agents , Indoles , Membranes, Artificial , Polymers , Cellulose/chemistry , Indoles/chemistry , Hydrogen-Ion Concentration , Polymers/chemistry , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Nanofibers/chemistry , Rhodamines/chemistry , Azo Compounds/chemistry , Azo Compounds/isolation & purification
11.
ACS Nano ; 18(19): 12547-12559, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695563

ABSTRACT

Enantioselective sensing and separation represent formidable challenges across a diverse range of scientific domains. The advent of hybrid chiral membranes offers a promising avenue to address these challenges, capitalizing on their unique characteristics, including their heterogeneous structure, porosity, and abundance of chiral surfaces. However, the prevailing fabrication methods typically involve the initial preparation of achiral porous membranes followed by subsequent modification with chiral molecules, limiting their synthesis flexibility and controllability. Moreover, existing chiral membranes struggle to achieve coupled-accelerated enantioseparation (CAE). Here, we report a replacement strategy to controllably produce mesoscale and chiral silica-carbon (MCSC) hybrid membranes that comprise chiral pores by interfacial superassembly on a macroporous alumina (AAO) membrane, in which both ion- and enantiomers can be effectively and selectively transported across the membrane. As a result, the heterostructured hybrid membrane (MCSC/AAO) exhibits enhanced selectivity for cations and enantiomers of amino acids, achieving CAE for amino acids with an isoelectric point (pI) exceeding 7. Interestingly, the MCSC/AAO system demonstrates enhanced pH-sensitive enantioseparation compared to chiral mesoporous silica/AAO (CMS/AAO) with significant improvements of 78.14, 65.37, and 14.29% in the separation efficiency, separation factor, and permeate flux, respectively. This work promises to advance the synthesis of two or more component-integrated chiral nanochannels with multifunctional properties and allows a better understanding of the origins of the homochiral hybrid membranes.

12.
Biochem Biophys Res Commun ; 719: 150042, 2024 07 30.
Article in English | MEDLINE | ID: mdl-38761633

ABSTRACT

BACKGROUND & AIMS: Psychosocial stress has become an unavoidable part of life, which was reported to promote tumor development. Chronic stress significantly promotes the norepinephrine (NE) secretion and the expression of leptin receptor (LEPR), leading to tumor invasion, metastasis, and proliferation. However, the mechanism of chronic stress-induced tumor proliferation remains unclear. METHODS: To reveal the effect of chronic stress on tumor proliferation, subcutaneous tumor models combined with chronic restraint stress (CRS) were established. Combined with the transcript omics database of liver cancer patients, the target pathways were screened and further verified by in vitro experiments. RESULTS: The results showed that the CRS with subcutaneous tumor transplantation (CRS + tumor) group exhibited significantly larger tumor sizes than the subcutaneous tumor transplantation (tumor) group. Compared with the tumor group, CRS obviously increased the mRNA levels of LEPR, FOS, and JUNB of tumor tissues in the CRS + tumor group. Furthermore, the treatment with norepinephrine (NE) significantly elevated the survival rate of H22 cells and enhanced the expression of LEPR, FOS, and JUNB in vitro. Silencing LEPR significantly reduced the expression of FOS and JUNB, accompanied by a decrease in H22 cell viability. CONCLUSIONS: Our study demonstrated that CRS activates the LEPR-FOS-JUNB signaling pathway by NE, aggravating tumor development. These findings might provide a scientific foundation for investigating the underlying pathological mechanisms of tumors in response to chronic stress.


Subject(s)
Cell Proliferation , Proto-Oncogene Proteins c-fos , Receptors, Leptin , Signal Transduction , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Animals , Cell Line, Tumor , Humans , Mice , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Male , Proto-Oncogene Proteins c-jun/metabolism , Stress, Psychological/metabolism , Restraint, Physical , Norepinephrine/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Mice, Inbred BALB C
13.
Environ Int ; 187: 108652, 2024 May.
Article in English | MEDLINE | ID: mdl-38657406

ABSTRACT

Afforestation is a promising nature-based climate solution for mitigating climate change, but it is subject to a complex web of biophysical, cost-benefit, market, and policy processes. Although its biophysical feasibility has been established, the cost, market, and policy constraints that affect climate change mitigation through afforestation are still unclear. Here, we estimate such cost, market, and policy constraints on the basis of biophysical feasibility. Our findings reveal that implementation costs are a more relevant constraint than opportunity costs on mitigating climate change through afforestation. The China Certified Emission Reduction market currently provides only a 0.308 % incentive for climate change mitigation through afforestation, due to market access constraints. The current market prices of China Certified Emission Reduction, China Carbon Emissions Trading Exchange, and Nature Based Carbon Offset in Voluntary Carbon Market constrain 88.15 %, 87.95 %, and 85.75 % of CO2 removal actions through afforestation, compared to the carbon price scenario (US$62.97 tCO2-1) of the EU Emissions Trading System. Moreover, land policy under the scenarios of prohibiting conversion of cultivated land to forest and forest restoration in degraded areas exhibit 8.87-29.59 % and 65.16-74.10 % constraints, respectively, on mitigating climate change through afforestation compared to land-use freedom conversion scenarios from 2020 to 2060. Thus, enhancing the incentive price of CO2 removal, addressing the market access barrier, strengthening cooperation between global carbon markets, and exploring carbon-neutral and food multi-oriented land policies can be valuable sources of mitigation efforts over the next 40 years.


Subject(s)
Climate Change , Conservation of Natural Resources , China , Forests , Environmental Policy , Forestry , Carbon Dioxide/analysis
14.
Adv Sci (Weinh) ; 11(18): e2306950, 2024 May.
Article in English | MEDLINE | ID: mdl-38441365

ABSTRACT

Intracellular proteome aggregation is a ubiquitous disease hallmark with its composition associated with pathogenicity. Herein, this work reports on a cell-permeable photosensitizer (P8, Rose Bengal derivative) for selective photo induced proximity labeling and crosslinking of cellular aggregated proteome. Rose Bengal is identified out of common photosensitizer scaffolds for its unique intrinsic binding affinity to various protein aggregates driven by the hydrophobic effect. Further acetylation permeabilizes Rose Bengal to selectively image, label, and crosslink aggregated proteome in live stressed cells. A combination of photo-chemical, tandem mass spectrometry, and protein biochemistry characterizations reveals the complexity in photosensitizing pathways (both Type I & II), modification sites and labeling mechanisms. The diverse labeling sites and reaction types result in highly effective enrichment and identification of aggregated proteome. Finally, aggregated proteomics and interaction analyses thereby reveal extensive entangling of proteostasis network components mediated by HSP70 chaperone (HSPA1B) and active participation of autophagy pathway in combating proteasome inhibition. Overall, this work exemplifies the first photo induced proximity labeling and crosslinking method (namely AggID) to profile intracellular aggregated proteome and analyze its interactions.


Subject(s)
Photosensitizing Agents , Proteome , Photosensitizing Agents/metabolism , Proteome/metabolism , Humans , Rose Bengal/metabolism , Cross-Linking Reagents/metabolism , Proteomics/methods , Tandem Mass Spectrometry/methods , Protein Aggregates
15.
Regen Biomater ; 11: rbae006, 2024.
Article in English | MEDLINE | ID: mdl-38426010

ABSTRACT

Delayed wound healing caused by excessive reactive oxygen species (ROS) remains a considerable challenge. In recent years, metal oxide nanozymes have gained significant attention in biomedical research. However, a comprehensive investigation of Co3O4-based nanozymes for enhancing wound healing and tissue regeneration is lacking. This study focuses on developing a facile synthesis method to produce high-stability and cost-effective Co3O4 nanoflakes (NFs) with promising catalase (CAT)-like activity to regulate the oxidative microenvironment and accelerate wound healing. The closely arranged Co3O4 nanoparticles (NPs) within the NFs structure result in a significantly larger surface area, thereby amplifying the enzymatic activity compared to commercially available Co3O4 NPs. Under physiological conditions, it was observed that Co3O4 NFs efficiently break down hydrogen peroxide (H2O2) without generating harmful radicals (·OH). Moreover, they exhibit excellent compatibility with various cells involved in wound healing, promoting fibroblast growth and protecting cells from oxidative stress. In a rat model, Co3O4 NFs facilitate both the hemostatic and proliferative phases of wound healing, consequently accelerating the process. Overall, the promising results of Co3O4 NFs highlight their potential in promoting wound healing and tissue regeneration.

16.
J Sci Food Agric ; 104(11): 6676-6686, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38545944

ABSTRACT

BACKGROUND: Peanut peptides have good chelating ability with metal ions. However, there are few studies on the chelation mechanism of peanut peptides with calcium and absorption properties of peptide-calcium complex. RESULTS: Peptides with high calcium chelating rate were isolated and purified from peanut protein hydrolysate (PPH), and the chelation rate of component F21 was higher (81.4 ± 0.8%). Six peptides were identified from component F21 by liquid chromatography-tandem mass spectrometry, and the frequency of acidic amino acids and arginine in the amino acid sequence was higher in all six peptides. Peanut peptide-calcium complex (PPH21-Ca) was prepared by selecting component F21 (PPH21). Ultraviolet analysis indicated that the chelate reaction occurred between peanut peptide and calcium ions. Fourier transform infrared analysis showed that the chelating sites were carboxyl and amino groups on the amino acid residues of peptides. Scanning electron microscopy revealed that the surface of peanut peptide had a smooth block structure, but the surface of the complex had a granular morphology. Caco-2 cell model tests revealed that the bioavailability of PPH21-Ca was 58.4 ± 0.5%, which was significantly higher than that of inorganic calcium at 37.0 ± 0.4%. CONCLUSION: Peanut peptides can chelate calcium ions by carboxyl and amino groups, and the peptide-calcium complex had higher bioavailability. This study provides a theoretical basis for the development of new calcium supplement products that are absorbed easily. © 2024 Society of Chemical Industry.


Subject(s)
Arachis , Calcium , Peptides , Plant Proteins , Protein Hydrolysates , Arachis/chemistry , Peptides/chemistry , Protein Hydrolysates/chemistry , Humans , Calcium/chemistry , Caco-2 Cells , Plant Proteins/chemistry , Chelating Agents/chemistry , Calcium Chelating Agents/chemistry , Biological Availability
17.
CNS Neurosci Ther ; 30(2): e14545, 2024 02.
Article in English | MEDLINE | ID: mdl-38421136

ABSTRACT

OBJECTIVES: Gait disorder (GD) is a common problem in cerebral small vessel disease (CSVD). This study aimed to determine (1) the early characteristics of GD in CSVD, (2) cerebellar neuroimaging features related to GD in CSVD, and (3) the association of cognitive impairment with GD. METHODS: In total, 183 subjects were enrolled in this study: patients with CSVD with normal cognitive function (CSVD-NC) group (64 subjects), patients with CSVD with mild cognitive impairment (CSVD-MCI) group (66 subjects), and a healthy control (HC) group (53 subjects). The GD patterns were evaluated using the ReadyGo three-dimensional motion balance testing system. Meanwhile, we analyzed the cerebrum and cerebellum structurally and functionally. Correlation analyses were conducted among gait indicators, neuroimaging features, and neuropsychological tests. RESULTS: Both the CSVD-NC and CSVD-MCI groups had a reduced stride length, cortical atrophy in the left cerebellum VIIIb, and decreased functional connectivity between the left cerebellum VIIIb and left SFGmed compared with the HC group. In the correlation analysis, the gray matter probability of the left cerebellum VIIIb was closely related to stride length in the HC group. In the CSVD-MCI group, linguistic function, memory, and attention were significantly correlated with gait performance. CONCLUSION: Decreased stride length was the earliest characteristic of GD in CSVD. Structural and functional regulation of the left cerebellum VIIIb could play a particularly important role in early GD in CSVD.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Movement Disorders , Humans , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnostic imaging , Cerebellum/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Gait
18.
Curr Med Imaging ; 20: 1-26, 2024.
Article in English | MEDLINE | ID: mdl-38389378

ABSTRACT

BACKGROUND: Assessing the early efficacy of microwave ablation (MWA) for pulmonary malignancies is a challenge for interventionalists. However, performing an accurate efficacy assessment at an earlier stage can significantly enhance clinical intervention and improve the patient's prognosis. PURPOSE: This research aimed to create and assess non-invasive diagnostic techniques using pre-operative computed tomography (CT) radiomics models to predict the recurrence of MWA in pulmonary malignancies. MATERIALS AND METHODS: We retrospectively enrolled 116 eligible patients with pulmonary malignancies treated with MWA. we separated the patients into two groups: a recurrence group (n = 28) and a non-recurrence group (n = 88), following the modified Response Evaluation Criteria in Solid Tumors (m-RECIST) criteria. We segmented the preoperative tumor area manually. We expanded outward the tumor boundary 4 times, with a width of 3 mm, using the tumor boundary as the baseline. Five groups of radiomics features were extracted and screened using max-relevance and min-redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) regression. Weight coefficients of the aforementioned features were used to calculate the Radscore and construct radiomics models for both tumoral and peritumoral areas. The Radscore from the radiomics model was combined with clinical risk factors to construct a combined model. The performance and clinical usefulness of the combined models were assessed through the evaluation of receiver operating characteristic (ROC) curves, the Delong test, calibration curves, and decision curve analysis (DCA) curves. RESULTS: The clinical risk factor for recurrence after MWA was tumor diameter (P < 0.05). Both tumoral and four peritumoral radiomics models exhibited high diagnostic efficacy. Furthermore, the combined 1 (C1)-RO model and the combined 2 (C2)-RO model showed higher efficacy with area under the curve (AUCs) of 0.89 and 0.89 in the training cohort, and 0.93 and 0.94 in the validation cohort, respectively. Both combined models demonstrated excellent predictive accuracy and clinical benefit. CONCLUSION: Preoperative CT radiomics models for both tumoral and peritumoral regions are capable of accurately predicting the recurrence of pulmonary malignancies after MWA. The combination of both models may lead to better performance and may aid in devising more effective preoperative treatment strategies.


Subject(s)
Lung Neoplasms , Microwaves , Humans , Microwaves/therapeutic use , Radiomics , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Tomography, X-Ray Computed
19.
Sci Rep ; 14(1): 4447, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38396128

ABSTRACT

To explore the relationship between quantitative perfusion histogram parameters of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) with the expression of tumor tissue epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) and EGFR gene mutations in non-small cell lung cancer (NSCLC). A total of 44 consecutive patients with known NSCLC were recruited from March 2018 to August 2021. Histogram parameters (mean, uniformity, skewness, energy, kurtosis, entropy, percentile) of each (Ktrans, Kep, Ve, Vp, Fp) were obtained by Omni Kinetics software. Immunohistochemistry staining was used in the detection of the expression of VEGF and EGFR protein, and the mutation of EGFR gene was detected by PCR. Corresponding statistical test was performed to compare the parameters and protein expression between squamous cell carcinoma (SCC) and adenocarcinoma (AC), as well as EGFR mutations and wild-type. Correlation analysis was used to evaluate the correlation between parameters with the expression of VEGF and EGFR protein. Fp (skewness, kurtosis, energy) were statistically significant between SCC and AC, and the area under the ROC curve were 0.733, 0.700 and 0.675, respectively. The expression of VEGF in AC was higher than in SCC. Fp (skewness, kurtosis, energy) were negatively correlated with VEGF (r = - 0.527, - 0.428, - 0.342); Ktrans (Q50) was positively correlated with VEGF (r = 0.32); Kep (energy), Ktrans (skewness, kurtosis) were positively correlated with EGFR (r = 0.622, r = 0.375, 0.358), some histogram parameters of Kep, Ktrans (uniformity, entropy) and Ve (kurtosis) were negatively correlated with EGFR (r = - 0.312 to - 0.644). Some perfusion histogram parameters were statistically significant between EGFR mutations and wild-type, they were higher in wild-type than mutated (P < 0.05). Quantitative perfusion histogram parameters of DCE-MRI have a certain value in the differential diagnosis of NSCLC, which have the potential to non-invasively evaluate the expression of cell signaling pathway-related protein.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Vascular Endothelial Growth Factor A/genetics , Genes, erbB-1 , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Contrast Media , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Magnetic Resonance Imaging/methods , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Perfusion , Retrospective Studies
20.
Mol Biol Cell ; 35(3): ar41, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38231854

ABSTRACT

The formation of cellular condensates, akin to membraneless organelles, is typically mediated by liquid-liquid phase separation (LLPS), during which proteins and RNA molecules interact with each other via multivalent interactions. Gaining a comprehensive understanding of these interactions holds significance in unraveling the mechanisms underlying condensate formation and the pathology of related diseases. In an attempt toward this end, fluorescence microscopy is often used to examine the colocalization of target proteins/RNAs. However, fluorescence colocalization is inadequate to reliably identify protein interaction due to the diffraction limit of traditional fluorescence microscopy. In this study, we achieve this goal through adopting a novel chemical biology approach via the dimerization-dependent fluorescent proteins (ddFPs). We succeeded in utilizing ddFPs to detect protein interaction during LLPS both in vitro and in living cells. The ddFPs allow us to investigate the interaction between two important LLPS-associated proteins, FUS and TDP-43, as cellular condensates formed. Importantly, we revealed that their interaction was associated with RNA binding upon LLPS, indicating that RNA plays a critical role in mediating interactions between RBPs. More broadly, we envision that utilization of ddFPs would reveal previously unknown protein-protein interaction and uncover their functional roles in the formation and disassembly of biomolecular condensates.


Subject(s)
Phase Separation , RNA
SELECTION OF CITATIONS
SEARCH DETAIL