Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(20): e2200907, 2022 May.
Article in English | MEDLINE | ID: mdl-35315132

ABSTRACT

Volatile solids with symmetric π-backbone are intensively implemented on manipulating the nanomorphology for improving the operability and stability of organic solar cells. However, due to the isotropic stacking, the announced solids with symmetric geometry cannot modify the microscopic phase separation and component distribution collaboratively, which will constrain the promotion of exciton splitting and charge collection efficiency. Inspired by the superiorities of asymmetric configuration, a novel process-aid solid (PAS) engineering is proposed. By coupling with BTP core unit in Y-series molecule, an asymmetric, volatile 1,3-dibromo-5-chlorobenzene solid can induce the anisotropic dipole direction, elevated dipole moment, and interlaminar interaction spontaneously. Due to the synergetic effects on the favorable phase separation and desired component distribution, the PAS-treated devices feature the evident improvement of exciton splitting, charge transport, and collection, accompanied by the suppressed trap-assisted recombination. Consequently, an impressive fill factor of 80.2% with maximum power conversion efficiency (PCE) of 18.5% in the PAS-treated device is achieved. More strikingly, the PAS-treated devices demonstrate a promising thickness-tolerance character, where a record PCE of 17.0% is yielded in PAS devices with a 300 nm thickness photoactive layer, which represents the highest PCE for thick-film organic solar cells.

2.
Sci Rep ; 8(1): 4906, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29559737

ABSTRACT

Solar cells employing hybrid perovskites have proven to be a serious contender versus established thin-film photovoltaic technologies. Typically, current photovoltaic devices are built up layer by layer from a transparent substrate (bottom-up approach), while the deposition of the perovskite layer itself comes with many challenges including the control of crystal size, nucleation density and growth rate. On the other hand, single crystals have been used with great success for studying the fundamental properties of this new class of optoelectronic materials. However, optoelectronic devices fabricated from single crystals often employ different materials than in their thin film counterparts. Here, we demonstrate various top-down approaches for low-temperature processed organic-inorganic metal halide perovskite single crystal devices. Our approach uses common and well-established material combinations that are often used in polycrystalline thin film devices. The use of a polymer bezel allows easier processing of small crystals and the fabrication of solution-processed, free-standing perovskite single crystal devices. All in all these approaches can supplement other measurements of more fundamental material properties often requiring perovskite single crystals by rendering a photovoltaic characterization possible on the very same crystal with comparable material combinations as in thin film devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...