Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Breast Cancer Res ; 26(1): 95, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849889

ABSTRACT

BACKGROUND: Breast cancers treated with aromatase inhibitors (AIs) can develop AI resistance, which is often driven by estrogen receptor-alpha (ERα/ESR1) activating mutations, as well as by ER-independent signaling pathways. The breast ER antagonist lasofoxifene, alone or combined with palbociclib, elicited antitumor activities in a xenograft model of ER + metastatic breast cancer (mBC) harboring ESR1 mutations. The current study investigated the activity of LAS in a letrozole-resistant breast tumor model that does not have ESR1 mutations. METHODS: Letrozole-resistant, MCF7 LTLT cells tagged with luciferase-GFP were injected into the mammary duct inguinal glands of NSG mice (MIND model; 6 mice/group). Mice were randomized to vehicle, lasofoxifene ± palbociclib, fulvestrant ± palbociclib, or palbociclib alone 2-3 weeks after cell injections. Tumor growth and metastases were monitored with in vivo and ex vivo luminescence imaging, terminal tumor weight measurements, and histological analysis. The experiment was repeated with the same design and 8-9 mice in each treatment group. RESULTS: Western blot analysis showed that the MCF7 LTLT cells had lower ERα and higher HER2 expressions compared with normal MCF7 cells. Lasofoxifene ± palbociclib, but not fulvestrant, significantly reduced primary tumor growth versus vehicle as assessed by in vivo imaging of tumors at study ends. Percent tumor area in excised mammary glands was significantly lower for lasofoxifene plus palbociclib versus vehicle. Ki67 staining showed decreased overall tumor cell proliferation with lasofoxifene ± palbociclib. The lasofoxifene + palbociclib combination was also associated with significantly fewer bone metastases compared with vehicle. Similar results were observed in the repeat experiment. CONCLUSIONS: In a mouse model of letrozole-resistant breast cancer with no ESR1 mutations, reduced levels of ERα, and overexpression of HER2, lasofoxifene alone or combined with palbociclib inhibited primary tumor growth more effectively than fulvestrant. Lasofoxifene plus palbociclib also reduced bone metastases. These results suggest that lasofoxifene alone or combined with a CDK4/6 inhibitor may offer benefits to patients who have ER-low and HER2-positive, AI-resistant breast cancer, independent of ESR1 mutations.


Subject(s)
Aromatase Inhibitors , Breast Neoplasms , Drug Resistance, Neoplasm , Pyrrolidines , Tetrahydronaphthalenes , Animals , Female , Humans , Mice , Aromatase Inhibitors/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Estrogen Receptor alpha/genetics , Fulvestrant/pharmacology , Letrozole/pharmacology , MCF-7 Cells , Piperazines/pharmacology , Pyridines/pharmacology , Pyrrolidines/pharmacology , Tetrahydronaphthalenes/pharmacology , Xenograft Model Antitumor Assays
2.
NPJ Breast Cancer ; 9(1): 96, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036546

ABSTRACT

The constitutively active ESR1 Y537S mutation is associated with endocrine therapy (ET) resistance and progression of metastatic breast cancer through its effects on estrogen receptor (ERα) gene regulatory functions. However, the complex relationship between ERα and the progesterone receptor (PR), known as ERα/PR crosstalk, has yet to be characterized in the context of the ERα Y537S mutation. Using proximity ligation assays, we identify an increased physical interaction of ERα and PR in the context of the ERα Y537S mutation, including in the nucleus where this interaction may translate to altered gene expression. As such, more than 30 genes were differentially expressed in both patient tumor and cell line data (MCF7 and/or T47D cells) in the context of the ERα Y537S mutation compared to ERα WT. Of these, IRS1 stood out as a gene of interest, and ERα and PR occupancy at chromatin binding sites along IRS1 were uniquely altered in the context of ERα Y537S. Furthermore, siRNA knockdown of IRS1 or treatment with the IRS1 inhibitor NT-157 had a significant anti-proliferative effect in ERα Y537S cell lines, implicating IRS1 as a potential therapeutic target for restoring treatment sensitivity to patients with breast cancers harboring ERα Y537S mutations.

3.
bioRxiv ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37546915

ABSTRACT

Steroid hormone receptors play a crucial role in the development and characterization of the majority of breast cancers. These receptors canonically function through homodimerization, but physical interactions between different hormone receptors play a key role in cell functions as well. The estrogen receptor (ERα) and progesterone receptor (PR), for example, are involved in a complex set of interactions known as ERα/PR crosstalk. Here, we developed a valuable panel of nuclear receptor expression plasmids specifically for use in NanoBRET assays to assess nuclear receptor homo- and heterodimerization. We demonstrate the utility of this assay system by assessing ERα/PR physical interaction in the context of the endocrine therapy resistance-associated ERα Y537S mutation. We identify a role of the ERα Y537S mutation beyond that of constitutive activity of the receptor; it also increases ERα/PR crosstalk. In total, the NanoBRET assay provides a novel avenue for investigating hormone receptor crosstalk. Future research may use this system to assess the effects of other clinically significant hormone receptor mutations on hormone receptor crosstalk.

4.
Cancers (Basel) ; 14(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35625985

ABSTRACT

ET resistance is a critical problem for estrogen receptor-positive (ER+) breast cancer. In this study, we have investigated how alterations in sphingolipids promote cell survival in ET-resistant breast cancer. We have performed LC-MS-based targeted sphingolipidomics of tamoxifen-sensitive and -resistant MCF-7 breast cancer cell lines. Follow-up studies included treatments of cell lines and patient-derived xenograft organoids (PDxO) with small molecule inhibitors; cytometric analyses to measure cell death, proliferation, and apoptosis; siRNA-mediated knockdown; RT-qPCR and Western blot for gene and protein expression; targeted lipid analysis; and lipid addback experiments. We found that tamoxifen-resistant cells have lower levels of ceramides and hexosylceramides compared to their tamoxifen-sensitive counterpart. Upon perturbing the sphingolipid pathway with small molecule inhibitors of key enzymes, we identified that CERK is essential for tamoxifen-resistant breast cancer cell survival, as well as a fulvestrant-resistant PDxO. CERK inhibition induces ceramide-mediated cell death in tamoxifen-resistant cells. Ceramide-1-phosphate (C1P) partially reverses CERK inhibition-induced cell death in tamoxifen-resistant cells, likely through lowering endogenous ceramide levels. Our findings suggest that ET-resistant breast cancer cells maintain lower ceramide levels as an essential pro-survival mechanism. Consequently, ET-resistant breast cancer models have a unique dependence on CERK as its activity can inhibit de novo ceramide production.

5.
Breast Cancer Res ; 24(1): 19, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264224

ABSTRACT

BACKGROUND: While estrogen receptor (ER) positive breast tumors generally respond well to endocrine therapy (ET), up to 40% of patients will experience relapse, either while on endocrine therapy or after ET is completed. We previously demonstrated that the selective pressure of tamoxifen activates the NFκB pathway in ER + patient tumors, breast cancer cell lines, and breast cancer xenograft tumors, and that this activation allows for survival of a subpopulation of NFκB + cells that contribute to cell regrowth and tumor relapse after ET withdrawal. However, the mechanisms contributing to the expansion of an NFκB + cell population on ET are unknown. METHODS: Here, we utilized single-cell RNA sequencing and bioinformatics approaches to characterize the NFκB + cell population and its clinical relevance. Follow-up studies were conducted to validate our findings and assess the function of the integrated stress response pathway in breast cancer cell lines and patient-derived models. RESULTS: We found that the NFκB + population that arises in response to ET is a preexisting population is enriched under the selective pressure of ET. Based on the preexisting NFκB + cell population, we developed a gene signature and found that it is predictive of tumor relapse when expressed in primary ER + tumors and is retained in metastatic cell populations. Moreover, we identified that the integrated stress response (ISR), as indicated by increased phosphorylation of eIF2α, occurs in response to ET and contributes to clonogenic growth under the selective pressure of ET. CONCLUSIONS: Taken together, our findings suggest that a cell population with active NFκB and ISR signaling can survive and expand under the selective pressure of ET and that targeting this population may be a viable therapeutic strategy to improve patient outcome by eliminating cells that survive ET. Understanding the mechanisms by which breast cancer cells survive the selective pressure of ET may improve relapse rates and overall outcome for patients with ER + breast tumors.


Subject(s)
Breast Neoplasms , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Female , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Signal Transduction , Tamoxifen/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL