ABSTRACT
OBJECTIVE: To determine the efficacy and safety of automated adjustment of the fraction of inspired oxygen (FiO2) in maintaining arterial oxygen saturation (SpO2) within a higher (91%-95%) and a lower (89%-93%) target range in preterm infants. STUDY DESIGN: Eighty preterm infants (gestational age [median]: 26 weeks, age [median] 18 days) on noninvasive (n = 50) and invasive (n = 30) respiratory support with supplemental oxygen, were first randomized to one of the SpO2 target ranges and then treated with automated FiO2 (A-FiO2) and manual FiO2 (M-FiO2) oxygen control for 24 hours each, in random sequence. RESULTS: The percent time within the target range was higher during A-FiO2 compared with M-FiO2 control. This effect was more pronounced in the lower SpO2 target range (62 ± 17% vs 54 ± 16%, P < .001) than in the higher SpO2 target range (62 ± 17% vs 58 ± 15%, P < .001). The percent time spent below the target or in hypoxemia (SpO2 <80%) was consistently reduced during A-FiO2, independent of the target range. The time spent above the target range or at extreme hyperoxemia (SpO2 >98%) was only reduced during A-FiO2 when targeting the lower SpO2 range (89%-93%). These outcomes did not differ between infants on noninvasive and invasive respiratory support. Manual adjustments were significantly reduced during A-FiO2 control. CONCLUSIONS: A-FiO2 control improved SpO2 targeting across different SpO2 ranges and reduced hypoxemia in preterm infants on noninvasive and invasive respiratory support. TRIAL REGISTRATION: ISRCTN 56626482.
Subject(s)
Oximetry/methods , Oxygen/blood , Respiration, Artificial/methods , Canada , Cross-Over Studies , Europe , Female , Humans , Infant, Newborn , Infant, Premature , Intensive Care Units, Neonatal , Male , Oxygen/therapeutic useABSTRACT
OBJECTIVE: To assess the clinical effect of an initial sustained inflation of 10 seconds and 25 cmH2O in preterm infants at birth. STUDY DESIGN: In this observational study inflation pressures and tidal volumes were recorded with the use of respiratory function monitoring of preterm infants <32 weeks' gestation receiving a sustained inflation. Inspiratory tidal volume (Vti) and expiratory tidal volume (Vte) of sustained inflation and cumulative Vti and Vte of breaths during sustained inflation were determined. Heart rate and oxygen saturation were measured before and after the sustained inflation. RESULTS: Seventy infants were included (median [IQR]: gestational age 29 [27-30] weeks). Mean (SD) sustained inflation duration was 10.5 seconds (2.9 seconds) with positive inflation pressure 24.2 cmH2O (2.3 cmH2O) and positive end-expiratory pressure 6.0 cmH2O (1.8 cmH2O). In 20 of 70 infants, no volumes were delivered during the sustained inflation because of mask leak. No leak occurred in 50 of 70 infants, of whom 36 of 50 breathed during the sustained inflation. In 14 of the infants who did not breathe, Vti and Vte were 0.9 mL/kg (0.4-2.7 mL/kg) and 0.6 mL/kg (0.1-2.0 mL/kg) with a functional residual capacity (FRC) gain of 0.0 (-0.5 to 0.6) mL/kg. In 36 of 50 infants who breathed during the sustained inflation, Vti was 2.9 mL/kg (0.9-9.2 mL/kg) and Vte 3.8 mL/kg (1.0-5.9 mL/kg), whereas cumulative Vti of breaths was 16.4 mL/kg (6.8-23.3 mL/kg) and cumulative Vte of breaths was 5.8 mL/kg (1.2-16.8 mL/kg) with an FRC gain of 7.1 mL/kg (1.7-15.9 mL/kg). Heart rate and oxygen saturation did not increase immediately after the sustained inflation. CONCLUSIONS: A sustained inflation of 10 seconds and 25 cmH2O in preterm infants at birth was not effective unless infants breathed. Although large mask leak accounted for approximately one-third of failures, as FRC gain was only associated with breathing, we speculate that active glottic adduction may be responsible for most failures.