Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 203
Filter
1.
ACS Nano ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39270300

ABSTRACT

Brain organoids are widely used to model brain development and diseases. However, a major challenge in their application is the insufficient supply of oxygen and nutrients to the core region, restricting the size and maturation of the organoids. In order to vascularize brain organoids and enhance the nutritional supply to their core areas, two-photon polymerization (TPP) 3D printing is employed to fabricate high-resolution meshed vessels in this study. These vessels made of photoresist with densely distributed micropores with a diameter of 20 µm on the sidewall, are cocultured with brain organoids to facilitate the diffusion of culture medium into the organoids. The vascularized organoids exhibit dimensional breaking growth and enhanced proliferation, reduced hypoxia and apoptosis, suggesting that the 3D-printed meshed vessels partially mimic vascular function to promote the culture of organoids. Furthermore, cortical, striatal and medial ganglionic eminence (MGE) organoids are respectively differentiated to generate Cortico-Striatal-MGE assembloids by 3D-printed vessels. The enhanced migration, projection and excitatory signaling transduction are observed between different brain regional organoids in the assembloids. This study presents an approach using TPP 3D printing to construct vascularized brain organoids and assembloids for enhancing the development and assembly, offering a research model and platform for neurological diseases.

2.
BMC Genomics ; 25(1): 887, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304819

ABSTRACT

Camellia oleifera is an important woody oil tree in China, in which the flowers and fruits appear during the same period. The endogenous hormone changes and transcription expression levels in different parts of the flower tissue (sepals, petals, stamens, and pistils), flower buds, leaves, and seeds of Changlin 23 high-yield (H), Changlin low-yield (L), and control (CK) C. oleifera groups were studied. The abscisic acid (ABA) content in the petals and stamens in the L group was significantly higher than that in the H and CK groups, which may be related to flower and fruit drops. The high N6-isopentenyladenine (iP) and indole acetic acid (IAA) contents in the flower buds may be associated with a high yield. Comparative transcriptome analysis showed that the protein phosphatase 2C (PP2C), jasmonate-zim-domain protein (JAZ), and WRKY-related differentially expressed genes (DEGs) may play an important role in determining leaf color. Gene set enrichment analysis (GSEA) comparison showed that jasmonic acid (JA) and cytokinin play an important role in determining the pistil of the H group. In this study, endogenous hormone and transcriptome analyses were carried out to identify the factors influencing the large yield difference in C. oleifera in the same year, which provides a theoretical basis for C. oleifera in the future.


Subject(s)
Camellia , Gene Expression Profiling , Plant Growth Regulators , Transcriptome , Camellia/genetics , Camellia/metabolism , Plant Growth Regulators/metabolism , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Gene Expression Regulation, Plant , Abscisic Acid/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism
3.
PLoS One ; 19(9): e0309146, 2024.
Article in English | MEDLINE | ID: mdl-39264941

ABSTRACT

Tunnel widening is a frequent problem following arthroscopic ligament reconstruction surgery that may primarily arise from a graft-tunnel mismatch caused by errors in surgical instruments and methods. The present study aimed to observe the influence of current surgical instruments and methods on graft-tunnel matching. We established an in vitro model using porcine Achilles tendons and tibias, and compared traditional surgical instruments (control group) with custom instruments (experimental group). Graft measurements, bone-tunnel creation, and measurements of the maximum pullout force of the graft from the bone tunnel were performed. Results indicated that the measuring gauge developed by our research group (capable of accurate measurement of graft diameters) may mitigate errors arising from graft-diameter measurement using traditional measuring cylinders. Therefore, errors caused by current surgical instruments and surgical methods led to an increase in graft-tunnel mismatches. The degree of mismatch was greater at the tibial end than at the femoral end.


Subject(s)
Plastic Surgery Procedures , Tibia , Animals , Swine , Biomechanical Phenomena , Tibia/surgery , Plastic Surgery Procedures/methods , Achilles Tendon/surgery , Ligaments/surgery , Femur/surgery
4.
Medicine (Baltimore) ; 103(36): e39464, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39252309

ABSTRACT

To more accurately diagnose and treat patients with different subtypes of thyroid cancer, we constructed a diagnostic model related to the iodine metabolism of THCA subtypes. THCA expression profiles, corresponding clinicopathological information, and single-cell RNA-seq were downloaded from TCGA and GEO databases. Genes related to thyroid differentiation score were obtained by GSVA. Through logistic analyses, the diagnostic model was finally constructed. DCA curve, ROC curve, machine learning, and K-M analysis were used to verify the accuracy of the model. qRT-PCR was used to verify the expression of hub genes in vitro. There were 104 crossover genes between different TDS and THCA subtypes. Finally, 5 genes (ABAT, CHEK1, GPX3, NME5, and PRKCQ) that could independently predict the TDS subpopulation were obtained, and a diagnostic model was constructed. ROC, DCA, and RCS curves exhibited that the model has accurate prediction ability. K-M and subgroup analysis results showed that low model scores were strongly associated with poor PFI in THCA patients. The model score was significantly negatively correlated with T cell follicular helper. In addition, the diagnostic model was significantly negatively correlated with immune scores. Finally, the results of qRT-PCR corresponded with bioinformatics results. This diagnostic model has good diagnostic and prognostic value for THCA patients, and can be used as an independent prognostic indicator for THCA patients.


Subject(s)
Iodine , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Computational Biology/methods , Female , Male , Machine Learning , Middle Aged , Thyroid Gland/pathology , Thyroid Gland/metabolism , ROC Curve , Cell Differentiation , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
5.
Zoology (Jena) ; 166: 126195, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39128254

ABSTRACT

For small non-hibernating mammals, a high thermogenic capacity is important to increase activity levels in the cold. It has been previously reported that lactating females decrease their thermogenic activity of brown adipose tissue (BAT), whereas their capacity to cope with extreme cold remains uncertain. In this study we examined food intake, body temperature and locomotor behavior, resting metabolic rate, non-shivering thermogenesis, and cytochrome c oxidase activity, and the rate of state 4 respiration of liver, skeletal muscle, and BAT in striped hamsters (Cricetulus barabensis) at peak lactation and non- breeding hamsters (controls). The lactating hamsters and non- breeding controls were acutely exposed to -15°C, and several markers indicative of thermogenic capacity were examined. In comparison to non-breeding females, lactating hamsters significantly increased food intake and body temperature, but decreased locomotor behavior, and the BAT mass, indicative of decreased BAT thermogenesis at peak lactation. Unexpectedly, lactating hamsters showed similar body temperature, resting metabolic rate, non-shivering thermogenesis with non-breeding females after acute exposure to -15°C. Furthermore, cytochrome c oxidase activity of liver, skeletal muscle and BAT, and serum thyroid hormone concentration, and BAT uncoupling protein 1 expression, in lactating hamsters were similar with that in non-breeding hamsters after acute extreme cold exposure. This suggests that lactating females have the same thermogenic capacity to survive cold temperatures compared to non-breeding animals. This is particularly important for females in the field to cope with cold environments during the period of reproduction. Our findings indicate that the females during lactation, one of the highest energy requirement periods, do not impair their thermogenic capacity in response to acute cold exposure.


Subject(s)
Cold Temperature , Lactation , Thermogenesis , Animals , Female , Thermogenesis/physiology , Lactation/physiology , Cricetulus/physiology , Cricetinae/physiology , Adipose Tissue, Brown/physiology , Adipose Tissue, Brown/metabolism
6.
Eur Heart J ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088352

ABSTRACT

BACKGROUND AND AIMS: Vascular smooth muscle cell (VSMC) senescence is crucial for the development of atherosclerosis, characterized by metabolic abnormalities. Tumour necrosis factor receptor-associated protein 1 (TRAP1), a metabolic regulator associated with ageing, might be implicated in atherosclerosis. As the role of TRAP1 in atherosclerosis remains elusive, this study aimed to examine the function of TRAP1 in VSMC senescence and atherosclerosis. METHODS: TRAP1 expression was measured in the aortic tissues of patients and mice with atherosclerosis using western blot and RT-qPCR. Senescent VSMC models were established by oncogenic Ras, and cellular senescence was evaluated by measuring senescence-associated ß-galactosidase expression and other senescence markers. Chromatin immunoprecipitation (ChIP) analysis was performed to explore the potential role of TRAP1 in atherosclerosis. RESULTS: VSMC-specific TRAP1 deficiency mitigated VSMC senescence and atherosclerosis via metabolic reprogramming. Mechanistically, TRAP1 significantly increased aerobic glycolysis, leading to elevated lactate production. Accumulated lactate promoted histone H4 lysine 12 lactylation (H4K12la) by down-regulating the unique histone lysine delactylase HDAC3. H4K12la was enriched in the senescence-associated secretory phenotype (SASP) promoter, activating SASP transcription and exacerbating VSMC senescence. In VSMC-specific Trap1 knockout ApoeKO mice (ApoeKOTrap1SMCKO), the plaque area, senescence markers, H4K12la, and SASP were reduced. Additionally, pharmacological inhibition and proteolysis-targeting chimera (PROTAC)-mediated TRAP1 degradation effectively attenuated atherosclerosis in vivo. CONCLUSIONS: This study reveals a novel mechanism by which mitonuclear communication orchestrates gene expression in VSMC senescence and atherosclerosis. TRAP1-mediated metabolic reprogramming increases lactate-dependent H4K12la via HDAC3, promoting SASP expression and offering a new therapeutic direction for VSMC senescence and atherosclerosis.

7.
Small Methods ; : e2400365, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210642

ABSTRACT

A novel approach for investigating the formation of solid electrolyte interphase (SEI) in Na-ion batteries (NIB) through the coupling of in situ liquid electrochemical transmission electron microscopy (ec-TEM) and gas-chromatography mass-spectrometry (GC/MS) is proposed. To optimize this coupling, experiments are conducted on the sodiation of hard carbon materials (HC) using two setups: in situ ec-TEM holder and ex situ setup. Electrolyte (NP30) is intentionally degraded using cyclic voltammetry (CV), and the recovered liquid product is analyzed using GC/MS. Solid product (µ-chip) is analyzed using TEM techniques in a post-mortem analysis. The ex situ experiments served as a reference to for insertion of Na+ ions in the HC, SEI size (389 nm), SEI composition (P, Na, F, and O), and Na plating. The in situ TEM analysis reveals a cyclability limitation, this issue appears to be caused by the plating of Na in the form of a "foam" structure, resulting from the gas release during the reaction of Na with DMC/EC electrolyte. The foam structure, subsequently transformes into a second SEI, is electrochemically inactive and reduces the cyclability of the battery. Overall, the results demonstrate the powerful synergy achieved by coupling in situ ec-TEM and GC/MS techniques.

8.
Micromachines (Basel) ; 15(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39064363

ABSTRACT

This paper introduces a novel portable multi-layer capsule-shaped triboelectric generator (CP-TEG), aimed at optimizing the performance of triboelectric generator technology in terms of miniaturization, modularity, and efficient energy collection. The CP-TEG utilizes a unique multi-layer, stacked structure and an elliptical cylindrical design to increase the effective frictional area and enhance power generation efficiency. Its portable design allows for flexible application in various environments and scenarios. Experimental results demonstrate that the CP-TEG can maintain stable and efficient electrical output under various motion amplitudes and frequencies, and it shows good adaptability to the direction of motion excitation. With a motion amplitude of 7 cm and a frequency of 1.94 Hz, the CP-TEG can charge a 220 µF capacitor to 1.3 V within 100 s. The power generation unit's output voltage and current are more than three times higher than that of traditional single-layer contact-separation mode triboelectric devices. Particularly, its performance in harvesting energy from human motion underscores its effectiveness as a renewable energy solution for wearable devices. Through its innovative structural design and optimized working mechanism, the CP-TEG demonstrates excellent energy collection efficiency and application potential, offering new options for sustainable energy solutions and development.

9.
J Med Virol ; 96(7): e29796, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982764

ABSTRACT

Coxsackievirus A16 (CV-A16) is a significant etiologic agent of hand, foot, and mouth disease (HFMD) and herpangina (HA), with the capacity to progress to severe complications, including encephalitis, aseptic meningitis, acute flaccid paralysis, myocarditis, and other critical conditions. Beijing's epidemiological surveillance system, established in 2008, encompasses 29 hospitals and 16 district disease control centers. From 2019 to 2021, the circulation of CV-A16 was characterized by the co-circulation of B1a and B1b clades. Multiple cases of HFMD linked to clade B1c has not been reported in Beijing until 2022. This study enrolled 400 HFMD and 493 HA cases. Employing real-time RT-PCR, 368 enterovirus-positive cases were identified, with 180 selected for sequencing. CV-A16 was detected in 18.89% (34/180) of the cases, second only to CV-A6, identified in 63.33% (114/180). Full-length VP1 gene sequences were successfully amplified and sequenced in 22 cases, revealing the presence of clades B1a, B1b, and B1c in 14, 3, and 5 cases, respectively. A cluster of five B1c clade cases occurred between June 29 and July 17, 2022, within a 7-km diameter region in Shunyi District. Phylogenetic analysis of five complete VP1 gene sequences and two full-genome sequences revealed close clustering with the 2018 Indian strain (GenBank accession: MH780757.1) within the B1c India branch, with NCBI BLAST results showing over 98% similarity. Comparative sequence analysis identified three unique amino acid variations (P3S, V25A, and I235V). The 2022 Shunyi District HFMD cases represent the first instances of spatiotemporally correlated CV-A16 B1c clade infections in Beijing, underscoring the necessity for heightened surveillance of B1c clade CV-A16 in HFMD and HA in this region.


Subject(s)
Hand, Foot and Mouth Disease , Phylogeny , Humans , Beijing/epidemiology , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/epidemiology , Male , Female , Child, Preschool , Infant , Child , Genotype , Enterovirus/genetics , Enterovirus/classification , Enterovirus/isolation & purification , Capsid Proteins/genetics , Adolescent , Epidemiological Monitoring
10.
Microbiol Spectr ; 12(9): e0105124, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39058029

ABSTRACT

Microorganisms are crucial components of the aquatic ecosystem due to their immense diversity and abundance. They are vital in sustaining ecological services, especially in maintaining essential biogeochemical cycles. Recent years have seen a substantial increase in surplus nitrogenous pollutants in aquatic ecosystems due to the heightened occurrence of anthropogenic activities. Elevated levels of free ammonia (FA, NH3), stemming from the discharge of excess nitrogenous pollutants, have caused notable fluctuations in aquatic ecosystems, leading to water eutrophication and various ecological challenges. The impact of these oscillations on microbial communities in aquatic ecosystems has not been extensively studied. This study employed 16S rRNA gene amplicon sequencing to systematically investigate the dynamics, co-occurrence networks, and assembly processes of microbial communities and their subcommunities (abundant, moderate, and rare) in the Luanhe River Diversion Project in China. Our findings indicate that NH3 concentration significantly influences the dynamics of microbial communities, with a notable decrease in community Richness and Phylogenetic Distance alongside increased community dissimilarity under higher NH3 conditions. The analysis revealed that certain microbial groups, particularly Actinobacteriaota, were notably more prevalent in environments with elevated NH3 levels, suggesting their potential resilience or adaptive responses to NH3 stress. Additionally, through co-occurrence network analysis, we observed dynamic changes in network topology and increased connectedness under NH3 stress. Key nodes, identified as connectors and module hubs, played crucial roles in maintaining network structure, particularly Cyanobacteria and Actinobacteriaota. Furthermore, stochastic processes, particularly drift and dispersal limitation, predominantly shaped the microbial communities. Within the three subcommunities, the impact of drift became more pronounced as the effect of dispersal limitation diminished. Overall, elucidating the dynamics of microbial communities in aquatic ecosystems exposed to NH3 can enhance our comprehension of the ecological mechanisms of microbial communities and provide new insights into the conservation of microbial community diversity and ecological functions. IMPORTANCE: The research presented in this paper explores how varying concentrations of free ammonia impact microbial communities in aquatic ecosystems. By employing advanced gene sequencing techniques, the study reveals significant changes in microbial diversity and network structures in response to increased ammonia levels. Key findings indicate that high ammonia concentrations lead to a decrease in microbial richness and diversity while increasing community dissimilarity. Notably, certain microbial groups, like Actinobacteria, show resilience to ammonia stress. This research enhances our understanding of how pollution affects microbial ecosystems and underscores the importance of maintaining balanced ammonia levels to preserve microbial diversity and ecosystem health.


Subject(s)
Ammonia , Bacteria , Microbiota , Phylogeny , RNA, Ribosomal, 16S , Rivers , Ammonia/metabolism , China , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Rivers/microbiology , Rivers/chemistry , Biodiversity , Ecosystem , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Eutrophication , Water Microbiology
11.
Int J Biol Macromol ; 274(Pt 2): 133302, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909735

ABSTRACT

The sea cucumber Apostichopus japonicus can expel internal organs under stress and regenerate them subsequently. However, growth is delayed during regeneration, significantly impacting the industry. Circular RNAs (circRNAs) are single-stranded circular RNA molecules produced through alternative splicing of mRNA precursors. They play crucial roles in regulating gene expression via the ceRNA mechanism. In this study, circRNA profiles of control and regenerated intestines were constructed. A total of 15,874 circRNAs were identified, with a length of 300-350 nucleotides (nt) being the most abundant. Sanger sequencing confirmed the circular structure of circRNA398. Compared with the normal intestine, 50 and 83 differentially expressed circRNAs (DE-circRNAs) were identified in the regenerated intestine at 1 and 3 days post evisceration (dpe), respectively. Gene ontology (GO) terms for signal transduction and development regulation were most significantly enriched in 1dpeVScon and 3dpeVScon treatments, respectively. The dual-luciferase assay revealed that circRNA8388 functions as a sponge for miR-2392, participating in the remodeling of the extracellular matrix (ECM). In conclusion, these findings will contribute to the enhancement of the non-coding RNA database for echinoderms and lay the groundwork for future investigations into circRNA regulation during intestinal regeneration.


Subject(s)
Intestines , MicroRNAs , RNA, Circular , Regeneration , Stichopus , Animals , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , MicroRNAs/genetics , Regeneration/genetics , RNA, Circular/genetics , Stichopus/genetics
12.
ACS Nano ; 18(20): 13241-13248, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38718159

ABSTRACT

One-dimensional (1D) systems have played a crucial role in the development of fundamental physics and practical applications. Recently, transition metal monochalcogenide (TMM) wires based on molybdenum (Mo) and tungsten (W) have emerged as promising platforms for investigating 1D physics in pure van der Waals (vdW) platforms. Here, we report on the bottom-up fabrication of Nb6Te6 wires down to the single-wire limit. The unique properties of Nb6Te6 single wire enable the realization of 1D charge density wave (CDW) phases in an isolated single TMM wire. Moreover, we revealed the appealing regulation of 1D CDW orders by van der Waals interactions at either the 1D-2D interface (i.e., rotation of a single wire along its wire axis) or the 1D-1D interface. Two rotation angles (30° and 0°) give rise to 3 × 1 and zigzag chain CDW morphologies, respectively, which exhibit pronounced differences in atomic displacement by a factor of 2. The interwire vdW coupling overwhelms its counterpart at the 1D-2D interface, thus locking the rotation angle (at 0°) as well as the interwire atomic registries. In contrast, interestingly, the phases of the charge oscillations are independent of the adjacent wires. The ability to tailor 1D charge orders provides a crucial addition to the toll set of vdW integrations beyond two-dimensional materials.

13.
Infect Drug Resist ; 17: 1615-1623, 2024.
Article in English | MEDLINE | ID: mdl-38694890

ABSTRACT

Purpose: Infection prevention and control (IPC) has a significant impact on the prognosis after pediatric cardiac surgery. This study aimed to provide surveillance data on the incidence and density of various infections during the COVID-19 epidemic and explore the influence of multi-drug resistant organisms (MDRO) on in-hospital prognosis after congenital heart disease surgery. Methods: This single-center retrospective study included pediatric patients who underwent cardiac surgery between 2021 and 2022. The results of the postoperative bacterial and fungal cultures and antimicrobial stewardship were collected. The demographic characteristics (age and weight), operation-related parameters (RACHS-1 grade, duration of cardiopulmonary bypass, and aortic cross clamp), and surgical outcomes (extracorporeal membrane oxygenation, delayed sternal closure, mortality, duration of mechanical ventilation, length of intensive care unit stay and hospital stay, and hospitalization costs) of MDRO and non-MDRO patients were compared. Results: A total of 4776 patients were included. There were 101 infectious culture results after the operation, with a nosocomial infection rate of 2.1%. There were 40 MDRO specimens from 36 patients, 50 non-MDRO specimens from 30 patients, and 11 fungal specimens from 10 patients. The incidence of pneumonia was 1.5%, with a ventilator-associated pneumonia incidence density of 7.2/1000 patient-days. The incidence of sepsis was 0.4%, with a catheter-related bloodstream infection incidence density of 0.24/ 1000 patient-days. The incidence density of catheter-associated tract infection was 0.45/ 1000 patient-days. The incidence of surgical site infection was 0.06%. The culture proportion before commencing antibiotics was 93% and the antibiotic consumption intensity was 30.7 DDD/100 bed-days. The length of intensive care unit stay in MDRO infection patients increased compared with that in non-MDRO infection patients, 30 (18,52) vs 17 (7,62) days, p=0.05). Conclusion: The IPC performance of Fuwai Hospital achieved satisfactory results. MDRO infection can lead to prolonged intensive care unit stay.


Developed countries have advanced infection prevention and control systems and comprehensive postoperative infection monitoring data for congenital heart disease. While developing countries have initiated efforts in infection prevention and control, global attention remains substantial. This study aimed to provide comprehensive infection surveillance data and identify possible implementation for further improvement in the National Center for Cardiovascular Diseases in China (Fuwai Hospital). This was a retrospective single-center study. We included pediatric patients who underwent cardiac surgery at a pediatric surgical center between 2021 and 2022, with an age limit of 14 years. Exclusion criteria included patients undergoing medical therapy, interventional therapy, or surgical therapy in other centers in Fuwai Hospital. This study, for the first time, reports the incidence of comprehensive healthcare-associated infection surveillance and targeted surveillance (encompassing device-associated infection, surgical site infection, and multi-drug resistant organisms) after pediatric cardiac surgery at the National Center for Cardiovascular Diseases in China. In addition, we report the data on antimicrobial stewardship. We compared the surgical outcome and hospitalization costs between patients with multi-drug resistant organism infection and those without multi-drug resistant organism infection and found that multi-drug resistant organism infection can lead to prolonged intensive care unit length of stay. The Fuwai Hospital achieved satisfactory infection prevention and control results. However, because China is a large developing country exhibiting notable variations in medical conditions across its diverse regions, prospective, multicenter, observational studies should be carried out for future research based on existing evidence.

14.
Adv Mater ; 36(29): e2401361, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38721975

ABSTRACT

Senescence plays a critical role in the development and progression of various diseases. This study introduces an amorphous, high-entropy alloy (HEA)-based nanozyme designed to combat senescence. By adjusting the nanozyme's composition and surface properties, this work analyzes its catalytic performance under both normal and aging conditions, confirming that peroxide and superoxide dismutase (SOD) activity are crucial for its anti-aging therapeutic function. Subsequently, the chiral-dependent therapeutic effect is validated and the senolytic performance of D-handed PtPd2CuFe across several aging models is confirmed. Through multi-Omics analyses, this work explores the mechanism underlying the senolytic action exerted by nanozyme in depth. It is confirm that exposure to senescent conditions leads to the enrichment of copper and iron atoms in their lower oxidation states, disrupting the iron-thiol cluster in mitochondria and lipoic acid transferase, as well as oxidizing unsaturated fatty acids, triggering a cascade of cuproptosis and ferroptosis. Additionally, the concentration-dependent anti-aging effects of nanozyme is validated. Even an ultralow dose, the therapeutic can still act as a senomorphic, reducing the effects of senescence. Given its broad-spectrum action and concentration-adjustable anti-aging potential, this work confirms the remarkable therapeutic capability of D-handed PtPd2CuFe in managing atherosclerosis, a disease involving various types of senescent cells.


Subject(s)
Atherosclerosis , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Humans , Animals , Mice , Copper/chemistry , Copper/pharmacology , Alloys/chemistry , Alloys/pharmacology , Iron/chemistry , Superoxide Dismutase/metabolism , Cellular Senescence/drug effects , Ferroptosis/drug effects
15.
Mol Ecol ; : e17352, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38624130

ABSTRACT

Low dissolved oxygen (LO) conditions represent a major environmental challenge to marine life, especially benthic animals. For these organisms, drastic declines in oxygen availability (hypoxic events) can trigger mass mortality events and thus, act as agents of selection influencing the evolution of adaptations. In sea cucumbers, one of the most successful groups of benthic invertebrates, the exposure to hypoxic conditions triggers adaptive adjustments in metabolic rates and behaviour. It is unclear, however, how these adaptive responses are regulated and the genetic mechanisms underpinning them. Here, we addressed this knowledge gap by assessing the genetic regulation (transcription and translation) of hypoxia exposure in the sea cucumber Apostichopus japonicus. Transcriptional and translational gene expression profiles under short- and long-term exposure to low oxygen conditions are tightly associated with extracellular matrix (ECM)-receptor interaction in which laminin and collagen likely have important functions. Finding revealed that genes with a high translational efficiency (TE) had a relatively short upstream open reading frame (uORF) and a high uORF normalized minimal free energy, suggesting that sea cucumbers may respond to hypoxic stress via altered TE. These results provide valuable insights into the regulatory mechanisms that confer adaptive capacity to holothurians to survive oxygen deficiency conditions and may also be used to inform the development of strategies for mitigating the harmful effects of hypoxia on other marine invertebrates facing similar challenges.

16.
Cell Host Microbe ; 32(5): 661-675.e10, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657606

ABSTRACT

The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa. Using genetics, we identified multiple responsible metabolic genes in phylogenetically diverse microbes. By colonizing germ-free mice with the wild-type strain and their isogenic mutant deficient in individual aa-metabolizing genes, we found that these genes regulate the availability of gut and circulatory aa. Notably, microbiota genes for branched-chain amino acids (BCAAs) and tryptophan metabolism indirectly affect host glucose homeostasis via peripheral serotonin. Collectively, at single-gene level, this work characterizes a microbiota-encoded metabolic activity that affects host nutrient homeostasis and provides a roadmap to interrogate microbiota-dependent activity to improve human health.


Subject(s)
Amino Acids, Branched-Chain , Amino Acids , Gastrointestinal Microbiome , Homeostasis , Tryptophan , Animals , Gastrointestinal Microbiome/physiology , Mice , Amino Acids/metabolism , Amino Acids, Branched-Chain/metabolism , Tryptophan/metabolism , Mice, Inbred C57BL , Nutrients/metabolism , Intestines/microbiology , Humans , Metabolomics , Glucose/metabolism , Serotonin/metabolism , Germ-Free Life , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Male
17.
Int J Surg ; 110(4): 2025-2033, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38320095

ABSTRACT

OBJECTIVES: All patients with congenital heart disease (CHD) receive postoperative management in ICUs. Infection prevention and control (IPC) has a significant impact on prognosis. This study provides a preliminary understanding of the fundamental aspects of IPC in ICUs following CHD surgery in China. METHODS: From September to October 2023, we initiated a survey on healthcare-associated infection (HAI) management in hospitals that perform CHD surgeries independently. The questionnaires were jointly completed by the ICU physicians and IPC personnel. Duplicate or unqualified questionnaires were excluded from the study. The contents of our questionnaires covered hospital and ICU capacity, performance of the infection control department, HAI surveillance, implementation of IPC measures, and antimicrobial stewardship (AMS). Qualified questionnaires were compared according to the volume of annual CHD surgeries performed in different ICUs. Group 1 was defined as volume more than 300 cases and group 2 was defined as volume less than or equal to 300 cases. RESULTS: Sixty-two of the 118 questionnaires were completed, with a response rate of 53%. The CHD surgical volume in 2022 of the 62 hospitals was 36342, accounting for 52% of the annual CHD surgical volume (69 672) across the country. The postoperative infection rates obtained from the 15 ICUs varied from 1.3 to 15%, with a median rate of 4.5%. A total of 16 ICUs provided data on drug-resistant bacteria, Klebsiella pneumoniae exhibiting the highest frequency. More than 95% of ICUs have established complete HAI management systems. Information-based HAI surveillance was conducted in 89% of ICUs. Approximately 67% of ICUs stopped prophylactic antibiotics within 48 hours after surgery. In complex cases, carbapenems were administered empirically in 89% of ICUs. Group 1 had an advantage over group 2 in preventing multi-drug-resistant organisms (all instruments should be used alone 100% vs. 86%, P =0.047; cleaning and disinfection of environmental surfaces, 100% vs. 81%, P =0.035; antibiotic consumption control 85% vs. 61%, P =0.044) and in preventing surgical site infections (perioperative blood glucose monitoring, 88% vs. 67%, P =0.048). However, Group 1 did not perform well in preventing catheter-related bloodstream infection (delayed catheter removal due to convenience of laboratory tests, 31% vs. 6%, P =0.021) and catheter-associated urinary tract infection (delayed catheter removal due to muscle relaxant administration, 88% vs. 58%, P =0.022). CONCLUSIONS: A relatively complete HAI management system has been established throughout the country in ICUs for CHD patients. Information-based surveillance of HAI needs to be promoted, and actions should be taken to facilitate the implementation of IPC measures and AMS bundles. Training and feedback are critical for implementing IPC measures.


Subject(s)
Cross Infection , Heart Defects, Congenital , Infection Control , Intensive Care Units , Humans , China/epidemiology , Heart Defects, Congenital/surgery , Surveys and Questionnaires , Cross Infection/prevention & control , Cross Infection/epidemiology , Intensive Care Units/statistics & numerical data , Infection Control/organization & administration , Infection Control/standards , Antimicrobial Stewardship/statistics & numerical data
18.
ACS Nano ; 18(8): 6463-6476, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38346263

ABSTRACT

The cellular uptake of nanoparticles (NPs) by biological cells is an important and fundamental process in drug delivery. Previous studies reveal that the physicochemical properties of nanoparticles as well as those of functionalized ligands can both critically affect the uptake behaviors. However, the effect of the conjugation strategy (i.e., the "bond" between the ligand and the NP) on the cellular uptake is overlooked and remains largely elusive. Here, by taking the broadly employed gold nanoparticle as an example, we comprehensively assessed the relationship between the conjugation strategy and uptake behaviors by introducing three ligands with the same functional terminal but different anchoring sites. As revealed by in vitro cell experiments and multiscale molecular simulations, the uptake efficiency of gold NPs was positively correlated with the strength of the "bond" and more specifically the ligand mobility on the NP surface. Moreover, we validated the results presented above by proposing a thermodynamic theory for the wrapping of NPs with mobile ligands. Further, we also showed that the endocytic pathway of NPs was highly dependent on ligand mobility. Overall, this study uncovered a vital role of conjugation strategy in the cellular uptake and may provide useful guidelines for tailoring the biobehaviors of nanoparticles.


Subject(s)
Metal Nanoparticles , Nanoparticles , Ligands , Gold/metabolism , Nanoparticles/chemistry , Drug Delivery Systems , Cell Membrane/metabolism
19.
Environ Res ; 248: 118248, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38278510

ABSTRACT

CO2-induced ocean acidification and warming pose ecological threats to marine life, especially calcifying species such as echinoderms, who rely on biomineralization for skeleton formation. However, previous studies on echinoderm calcification amid climate change had a strong bias towards heavily calcified echinoderms, with little research on lightly calcified ones, such as sea cucumbers. Here, we analyzed the embryo-larval development and their biomineralization-related gene expression of a lightly calcified echinoderm, the sea cucumber (Apostichopus japonicus), under experimental seawater acidification (OA) and/or warming (OW). Results showed that OA (- 0.37 units) delayed development and decreased body size (8.58-56.25 % and 0.36-19.66 % decreases in stage duration and body length, respectively), whereas OW (+3.1 °C) accelerated development and increased body size (33.99-55.28 % increase in stage duration and 2.44-14.41 % enlargement in body length). OW buffered the negative effects of OA on the development timing and body size of A. japonicus. Additionally, no target genes were expressed in the blastula stage, and only two biomineralization genes (colp3α, cyp2) and five TFs (erg, tgif, foxN2/3, gata1/2/3, and tbr) were expressed throughout the embryo-larval development. Our findings suggest that the low calcification in A. japonicus larvae may be caused by biomineralization genes contraction, and low expression of those genes. Furthermore, this study indicated that seawater acidification and warming affect expression of biomineralization-related genes, and had an effect on body size and development rate during the embryo-larval stage in sea cucumbers. Our study is a first step toward a better understanding of the complexity of high pCO2 on calcification and helpful for revealing the adaptive strategy of less-calcified echinoderms amid climate change.


Subject(s)
Ocean Acidification , Seawater , Animals , Biomineralization , Hydrogen-Ion Concentration , Larva , Gene Expression
20.
Oncol Lett ; 27(2): 77, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38192679

ABSTRACT

The morbidity and mortality rates of endometrial cancer (EC) are increasing yearly. Early-stage EC can be effectively treated through surgery or surgery combined with radiotherapy and chemotherapy. Advanced and recurrent EC is treated with chemotherapy and comprehensive treatment; however, the prognosis for patients at this disease stage is poor. Consequently, novel and effective treatment strategies are urgently required for these patients. Breakthrough progress has been made with the use of immunosuppressants in the treatment of EC, which have been included in treatment guidelines. In the present review, the etiology and classification of EC was outlined and the relevant scientific basis for the application of immunosuppressants in advanced and recurrent EC was discussed. The relevant published and ongoing clinical trials are also summarized. As such, the present review aimed to provide a scientific summary of immunotherapy of EC.

SELECTION OF CITATIONS
SEARCH DETAIL