Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Heliyon ; 10(13): e33709, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39050446

ABSTRACT

Nano-ferrites, metal oxides, and carbon-based nanomaterials have been used frequently to enhance optical and magnetic prospects for latent applications. Copper ferrite/Graphene Oxide and Zinc Oxide (CuFe2O4/GO/ZnO) ternary nanocomposite synthesized by hydrothermal route showed dramatically good outcomes as the band gap energy value of synthesized nanocomposite approaches to 2.4 eV. Furthermore, the light absorbance of CuFe2O4 increases by adding ZnO and GO. The experimental data revealed the face-centered cubic structure (FCC) of pure spinal ferrite (CuFe2O4) nanoparticles even after adding ZnO and GO. The 2θ peak observed at 31.70° with (220) hkl planes indicates the successful addition of ZnO nanoparticles in CuFe2O4/GO nanocomposite. XRD graph, the absence of characteristic peaks of GO revealed the intercalation of CuFe2O4 nanoparticles with GO layers. In SEM images, agglomeration among CuFe2O4 nanoparticles is observed due to the magnetic interaction of nano-crystallite with a high surface-to-volume (S/V) ratio. VSM can be used to determine the magnetic properties of as-synthesized samples at moderate temperatures under 0-0.5 and ± 5 tesla. In CuFe2O4/GO/ZnO ternary nanocomposite, the saturation magnetization value reduces from 2.071 to 1.365 emu/g due to the addition of ZnO nanoparticles. The loops were narrowed showing a decrease in the coercive field with the addition of ZnO nanoparticles in CuFe2O4/GO ternary nanocomposite material. Moreover, the study of electrical properties of pure CuFe2O4 and CuFe2O4/GO/ZnO ternary nanocomposite revealed that the values of dielectric constant and tangent loss decrease at high frequencies owing to surface charge polarization and intrinsic dipole interactions. The study of the electrical properties of both pure CuFe2O4 and the CuFe2O4/GO/ZnO ternary nanocomposite reveals that the dielectric constant (ε') and tangent loss (tanδ) exhibit a decreasing trend as the frequency increases. This behavior is attributed to surface charge polarization and intrinsic dipole interactions. At lower frequencies, both samples display elevated values for these properties, which stabilize as the frequency increases beyond 2 MHz. Notably, high AC conductivity is observed in both samples, attributed to increased capacitance and resistance.

2.
Sci Rep ; 14(1): 16918, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043810

ABSTRACT

The aim of the present research was to investigate the presence of heavy metals such as lead (Pb), copper (Cu), chromium (Cr), and cadmium (Cd) in blood samples from cows raised with irrigated wastewater, as well as in the wastewater itself, in the North-western region of Pakistan. A total of 60 blood samples were collected from five different locations in Kohat, namely Tappi Road (TR), Pindi Road (PR), Gul Malik Road (GMR), Markaz Road (MR), and a control group. The samples of both i.e. cow blood and wastewater were analyzed for the concentrations of heavy metals. The highest concentration of Cd was detected in the MR site with a mean value of 0.03 mg/L, and the highest concentration of Cu (0.04 mg/L) was recorded in the TR site, while the lowest level was found in the control group with a mean of 0.002 mg/L in blood samples. The highest Cr and Pb concentrations were found at the PR site, with mean values of 0.03 and 0.07 mg/L, respectively, whereas the control group had the lowest concentrations, with mean values of 0.002 and 0.01 mg/L. Similarly, heavy metal concentrations were analyzed in wastewater used for irrigation in the study area. Results indicated elevated concentrations of Cu and Cr in wastewater, although they remained below the World Health Organization (WHO) recommended values except for Cr (0.13 mg/L) in the GMR site, which exceeded permissible limits. Cd and Pb concentrations in wastewater were relatively low, but Cd concentration surpassed WHO limits, particularly with a mean concentration of 0.08 mg/L in the TR site. Comparison between heavy metal concentrations in blood and wastewater revealed higher values of Cd and Pb in blood samples than in wastewater, while Cu and Cr concentrations were higher in water compared to blood. Additionally, elevated levels of Super Oxide Dismutase (SOD), antioxidant enzyme Catalase (CAT), and oxidative stress marker malondialdehyde (MDA) were detected in blood samples. Cluster and principal component analyses were employed to assess heavy metal toxicity among the groups, indicating potential long-term adverse health effects on animals, transfer to humans, and toxicity in living organisms.


Subject(s)
Antioxidants , Metals, Heavy , Wastewater , Animals , Wastewater/chemistry , Cattle , Metals, Heavy/blood , Antioxidants/metabolism , Antioxidants/analysis , Water Pollutants, Chemical/blood , Water Pollutants, Chemical/analysis , Agricultural Irrigation , Pakistan , Female
3.
Chem Asian J ; : e202400584, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031799

ABSTRACT

A novel hybrid network was synthesized in two steps: the first step involved the attachment of glycidyl methacrylate (GMA) to octa(aminophenyl) silsesquioxane (OAPS) through a ring-opening reaction, forming a hybrid dendrimer structure, and the second step involved the cross-linking of hybrid dendrimer using an azobisisobutyronitrile initiator to create the final hybrid network of OAPS-GMA. The synthesized hybrid material was comprehensively characterized using fourier transform infrared Spectroscopy (FTIR), nuclear magnetic resonance ((1H, 13C, and 29Si NMR) spectroscopy, thermogravimetric Analysis (TGA), and scanning electron microscopy (SEM).  The BET surface area was found to be 25.44 m²/g, and significant 2.341 cm³/g of total pore volume was observed. The TGA analysis shows that the material is highly stable up to 450 oC. The synthesized network demonstrated remarkable adsorption capacities for iodine and dyes. It exhibited an iodine adsorption capacity of 3.4g/g from vapors and 874mg/g from solution. Additionally, it showed significant adsorption capacities for Rhodamine B and Congo red, with values of 762mg/g and 517mg/g, respectively. This study not only provides a novel method for preparing GMA-functionalized silsesquioxane-based porous hybrid polymers but also contributes to advancing solutions for environmental pollution issues.

4.
Math Med Biol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39010312

ABSTRACT

Viral infection develops in the organism due to virus replication inside infected cells and its transmission from infected to uninfected cells through the extracellular matrix or cell junctions. In this work, we model infection spreading in tissue with a delay reaction-diffusion system of equations for the concentrations of uninfected cells, infected cells and virus. We prove the wave existence, determine its speed of propagation and introduce a simplified one-equation model obtained from the complete model using a quasi-stationary approximation.

5.
Sci Rep ; 14(1): 15985, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987560

ABSTRACT

Drought stress is a major abiotic stress affecting the performance of wheat (Triticum aestivum L.). The current study evaluated the effects of drought on wheat phenology, physiology, and biochemistry; and assessed the effectiveness of foliar-applied sulfhydryl thiourea to mitigate drought-induced oxidative stress. The treatments were: wheat varieties; V1 = Punjab-2011, V2 = Galaxy-2013, V3 = Ujala-2016, and V4 = Anaaj-2017, drought stress; D1 = control (80% field capacity [FC]) and D2 = drought stress (40% FC), at  the reproductive stage, and sulfhydryl thiourea (S) applications; S0 = control-no thiourea and S1 = foliar thiourea application @ 500 mg L-1. Results of this study indicated that growth parameters, including height, dry weight, leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), net assimilation rate (NAR) were decreased under drought stress-40% FC, as compared to control-80% FC. Drought stress reduced the photosynthetic efficiency, water potential, transpiration rates, stomatal conductances, and relative water contents by 18, 17, 26, 29, and 55% in wheat varieties as compared to control. In addition, foliar chlorophyll a, and b contents were also lowered under drought stress in all wheat varieties due to an increase in malondialdehyde and electrolyte leakage. Interestingly, thiourea applications restored wheat growth and yield attributes by improving the production and activities of proline, antioxidants, and osmolytes under normal and drought stress as compared to control. Thiourea applications improved the osmolyte defense in wheat varieties as peroxidase, superoxide dismutase, catalase, proline, glycine betaine, and total phenolic were increased by 13, 20, 12, 17, 23, and 52%; while reducing the electrolyte leakage and malondialdehyde content by 49 and 32% as compared to control. Among the wheat varieties, Anaaj-2017 showed better resilience towards drought stress and also gave better response towards thiourea application based on morpho-physiological, biochemical, and yield attributes as compared to Punjab-2011, Galaxy-2013, and Ujala-2016. Eta-square values showed that thiourea applications, drought stress, and wheat varieties were key contributors to most of the parameters measured. In conclusion, the sulfhydryl thiourea applications improved the morpho-physiology, biochemical, and yield attributes of wheat varieties, thereby mitigating the adverse effects of drought.  Moving forward, detailed studies pertaining to the molecular and genetic mechanisms under sulfhydryl thiourea-induced drought stress tolerance are warranted.


Subject(s)
Droughts , Oxidative Stress , Plant Leaves , Thiourea , Triticum , Triticum/drug effects , Triticum/growth & development , Triticum/metabolism , Triticum/physiology , Thiourea/pharmacology , Oxidative Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Antioxidants/metabolism , Photosynthesis/drug effects , Chlorophyll/metabolism , Water/metabolism , Stress, Physiological/drug effects
6.
Toxicol Sci ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867704

ABSTRACT

Inhalation exposures to dihydroxyacetone (DHA) occur through spray tanning and e-cigarette aerosols. Several studies in skin models have demonstrated that millimolar doses of DHA are cytotoxic, yet the genotoxicity was unclear. We examined the genotoxicity of DHA in cell models relevant to inhalation exposures. Human bronchial epithelial cells BEAS-2B, lung carcinoma cells A549, cardiomyocyte Ac16, and hepatocellular carcinoma HepG3 were exposed to DHA, and low millimolar doses of DHA were cytotoxic. IC90 DHA doses induced cell cycle arrest in all cells except the Ac16. We examined DHA's genotoxicity using strand break markers, DNA adduct detection by Repair Assisted Damage Detection (RADD), metaphase spreads, and a forward mutation assay for mutagenesis. Similar to results for skin, DHA did not induce significant levels of strand breaks. However, RADD revealed DNA adducts were induced 24 h after DHA exposure, with BEAS-2B and Ac16 showing oxidative lesions and A549 and HepG3 showing crosslink-type lesions. Yet, only low levels of reactive oxygen species or advanced glycation end products were detected after DHA exposure. Metaphase spreads revealed significant increases in chromosomal aberrations in the BEAS-2B and HepG3 with corresponding changes in ploidy. Finally, we confirmed the mutagenesis observed using the supF reporter plasmid. DHA increased the mutation frequency, consistent with methylmethane sulfonate, a mutagen and clastogen. These data demonstrate DHA is a clastogen, inducing cell-specific genotoxicity and chromosomal instability. The specific genotoxicity measured in the BEAS-2B in this study suggests that inhalation exposures pose health risks to vapers, requiring further investigation.

7.
Ecotoxicol Environ Saf ; 281: 116620, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905935

ABSTRACT

Iron-nanoparticles (Fe-NPs) are increasingly been utilized in environmental applications due to their efficacy and strong catalytic activities. The novelty of nanoparticle science had attracted many researchers and especially for their green synthesis, which can effectively reuse biological resources during the polymerization reactions. Thus, the synthesis of Fe-NPs utilizing plant extracts could be considered as the eco-friendly, simple, rapid, energy-efficient, sustainable, and cost-effective. The green synthesis route can be recognized as a practical, valuable, and economically effective alternative for large-scale production. During the production process, some biomolecules present in the extracts undergo metal salts reduction, which can serve as both a capping and reducing mechanism, enhancing the reactivity and stability of green-synthesized Fe-NPs. The diversity of species provided a wide range of potential sources for green synthesis of Fe-NPs. With improved understanding of the specific biomolecules involved in the bioreduction and stabilization processes, it will become easier to identify and utilize new, potential plant materials for Fe-NPs synthesis. Newly synthesized Fe-NPs require different characterization techniques such as transmission electron microscope, ultraviolet-visible spectrophotometry, and X-ray absorption fine structure, etc, for the determination of size, composition, and structure. This review described and assessed the recent advancements in understanding green-synthesized Fe-NPs derived from plant-based material. Detailed information on various plant materials suitable of yielding valuable biomolecules with potential diverse applications in environmental safety. Additionally, this review examined the characterization techniques employed to analyze Fe-NPs, their stability, accumulation, mobility, and fate in the environment. Holistically, the review assessed the applications of Fe-NPs in remediating wastewaters, organic residues, and inorganic contaminants. The toxicity of Fe-NPs was also addressed; emphasizing the need to refine the synthesis of green Fe-NPs to ensure safety and environmental friendliness. Moving forward, the future challenges and opportunities associated with the green synthesis of Fe-NPs would motivate novel research about nanoparticles in new directions.


Subject(s)
Environmental Pollutants , Green Chemistry Technology , Iron , Metal Nanoparticles , Plant Extracts , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Iron/chemistry , Environmental Pollutants/chemistry , Plant Extracts/chemistry , Environmental Restoration and Remediation/methods
8.
Biosens Bioelectron ; 260: 116413, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38815464

ABSTRACT

An optical photonic biosensor for the detection of microcystin (MC) has been developed using an aptamer-immobilized interpenetrating polymeric network (IPNaptamer) intertwined with solid-state cholesteric liquid crystals (CLCsolids). The IPN was constructed with a polyacrylic acid hydrogel (PAA). Aptamer immobilization enhances polarity while blocking hydrogen bonding between the carboxylic groups of PAA-IPN hydrogel, thereby increasing the swelling ratio of the PAA-IPN hydrogel. This leads to an expansion in the helical pitch of the corresponding IPNaptamer-CLCsolid biosensor chip and results in a red-shift in the reflected color. Upon exposure to an aqueous MC solution, the IPNaptamer-CLCsolid biosensor chip exhibits aptamer-mediated engulfment of MC, resulting in reduced polarity of the IPNaptamer complex and a consequential blue-shift in the biosensor chip color occurred. The wavelength shift of the IPNaptamer-CLCsolid biosensor chip demonstrates a linear change with an increase in MC concentration from 3.8 to 150 nM, with a limit of detection of 0.88 nM. This novel optical biosensor is characterized by its low cost, simplicity, selectivity, and sensitivity, offering a promising strategy for designing similar toxin biosensors through the modification of biological receptors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Limit of Detection , Microcystins , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Microcystins/analysis , Aptamers, Nucleotide/chemistry , Liquid Crystals/chemistry , Acrylic Resins/chemistry , Hydrogels/chemistry , Equipment Design , Photons
9.
Sci Rep ; 14(1): 7841, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570648

ABSTRACT

Recent research has focused on applying blockchain technology to solve security-related problems in Internet of Things (IoT) networks. However, the inherent scalability issues of blockchain technology become apparent in the presence of a vast number of IoT devices and the substantial data generated by these networks. Therefore, in this paper, we use a lightweight consensus algorithm to cater to these problems. We propose a scalable blockchain-based framework for managing IoT data, catering to a large number of devices. This framework utilizes the Delegated Proof of Stake (DPoS) consensus algorithm to ensure enhanced performance and efficiency in resource-constrained IoT networks. DPoS being a lightweight consensus algorithm leverages a selected number of elected delegates to validate and confirm transactions, thus mitigating the performance and efficiency degradation in the blockchain-based IoT networks. In this paper, we implemented an Interplanetary File System (IPFS) for distributed storage, and Docker to evaluate the network performance in terms of throughput, latency, and resource utilization. We divided our analysis into four parts: Latency, throughput, resource utilization, and file upload time and speed in distributed storage evaluation. Our empirical findings demonstrate that our framework exhibits low latency, measuring less than 0.976 ms. The proposed technique outperforms Proof of Stake (PoS), representing a state-of-the-art consensus technique. We also demonstrate that the proposed approach is useful in IoT applications where low latency or resource efficiency is required.

11.
Cureus ; 16(4): e58481, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644947

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) ranks as the second leading cause of cancer-related mortality among women and the third leading cause of cancer-associated mortality among men. Treatment of colon cancer is very crucial for a patient's survival. In this study, we assessed the reliability, efficacy, and safety of raltitrexed in intraoperative intraperitoneal chemotherapy for colon cancer. METHODOLOGY: A total of 57 patients with clinical stages II and III of colon cancer were included in the study. R0 resection surgery + hyperthermic intraperitoneal chemotherapy (HIPEC) procedure was done with raltitrexed. It was given in a dose of 3 mg/m2 in a 0.9% NS injection in a volume of 500 milliliters. Postoperative complications were observed. RESULT: The most common postoperative complication was nausea/vomiting, which was seen in 21 out of 57 patients (37%). The second most common complication was fever (18/57). None of the patients died or developed renal toxicity, hepatic toxicity, and intestinal obstruction. CONCLUSION: Raltitrexed is a reliable, efficient, and safe drug and can be used in intraoperative intraperitoneal chemotherapy of colon cancer.

12.
Phys Chem Chem Phys ; 26(15): 12210-12218, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38592224

ABSTRACT

The spin coating method was used to deposit MAPbI2Br films on FTO-glass substrates. Zn2+ (zinc) doping was used for these films at intensity rates of 2% and 4%, respectively. XRD analysis proved that MAPbI2Br films had a cubic structure and a crystalline character. 2% Zn doping into the MAPbI2Br film had a modest large grain size (38.09 nm), Eg (1.95 eV), high refractive index (2.66), and low extinction coefficient (1.67), according to XRD and UV-vis analyses. To facilitate and enhance carrier transit, at contacts as well as throughout the bulk material, the perovskite's trap-state densities decreased. The predicted MAPbI2Br valence and conduction band edges are -5.44 and -3.52, respectively. The conduction band (CB) edge of the film that was exposed to Zn atoms has been pressed towards the lower value, assembly it a better material for solar cells. EIS is particularly useful for understanding charge carrier transport, recombination mechanisms, and the influence of different interfaces within the device structure. Jsc is 11.09 mA cm-2, Voc is 1.09, PCE is 9.372% and FF is 0.777. The cell made with the 2% Zn doped into the MAPbI2Br film demonstrated a superior device.

13.
Cureus ; 16(3): e57270, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38686270

ABSTRACT

Introduction Shoulder dislocation is the most common injury encountered in orthopedic outpatient department. The choice of procedure depends on the expertise of surgeons. The objective of this study was to compare the Latarjet procedure with the modified Putti-Platt surgery for recurrent anterior shoulder dislocation in terms of functional outcomes. Materials and methods A quasi-experimental study evaluated 60 patients with recurrent anterior shoulder instability. Patients were assigned to either Latarjet or modified Putti-Platt surgery. Functional outcomes were assessed at six months using the Constant-Murley shoulder score. Results This study encompassed 60 patients (mean age: 23.93±5.88 years) undergoing shoulder procedures. Functional outcomes exhibited a majority of 55% excellent, 35% good, 6.7% fair, and 3.3% poor outcomes. No significant differences in functional outcomes were found between the procedures. Conclusion Both procedures may be viable options for recurrent shoulder instability. The choice may depend on patient factors and surgeon preference. Further research is needed to refine techniques and identify ideal candidates.

14.
Sci Rep ; 14(1): 9948, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688965

ABSTRACT

This article introduces an adaptive approach within the Bayesian Max-EWMA control chart framework. Various Bayesian loss functions were used to jointly monitor process deviations from the mean and variance of normally distributed processes. Our study proposes the mechanism of using a function-based adaptive method that picks self-adjusting weights incorporated in Bayesian Max-EWMA for the estimation of mean and variance. This adaptive mechanism significantly enhances the effectiveness and sensitivity of the Max-EWMA chart in detecting process shifts in both the mean and dispersion. The Monte Carlo simulation technique was used to calculate the run-length profiles of different combinations. A comparative performance analysis with an existing chart demonstrates its effectiveness. A practical example from the hard-bake process in semiconductor manufacturing is presented for practical context and illustration of the chart settings and performance. The empirical results showcase the superior performance of the Adaptive Bayesian Max-EWMA control chart in identifying out-of-control signals. The chart's ability to jointly monitor the mean and variance of a process, its adaptive nature, and its Bayesian framework make it a useful and effective control chart.

15.
Heliyon ; 10(5): e27180, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495210

ABSTRACT

Buckwheat is a globally recognized, nutritionally rich crop with robust adaptability, serving as a multi-purpose plant for its health benefits. Achieving precise and mechanized plot seed harvesting is a critical step in obtaining accurate results in breeding experiments. However, plot breeding requires no seed retention, no mixing, and ensures no accumulation of seed in the threshing unit. A self-cleaning technology was developed to prevent seed retention, mixing, and accumulation in the multistage tangential cylinder threshing unit. The newly designed cleaning system has five air inlets and a centrifugal fan for pneumatic cleaning. CFD simulations were conducted for each inlet position, coupled with four varying inlet velocities and the rotation speed of the main threshing cylinder. During the post-processing stage of the CFD modeling, a line consisting of fifty points was drawn beneath the threshing drums, and the air velocity at these points was recorded. The optimal configuration of inlet position, inlet air velocity, and main threshing drum rotation speed for efficient cleaning was identified based on the ratio of points beneath the drums where the airflow speed surpassed the suspension speed of buckwheat to the points where the airflow speed was lower than the suspension speed of buckwheat. The optimal configuration for "inlet_1" was identified based on the suspension velocity of buckwheat grain, with an inlet velocity of 4 m/s and a main threshing drum speed of 450 rpm.

16.
Funct Integr Genomics ; 24(2): 34, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365972

ABSTRACT

Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.


Subject(s)
Biofortification , Hunger , Biofortification/methods , Plant Breeding , Crops, Agricultural/genetics , Soil
17.
Medicine (Baltimore) ; 103(8): e36933, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394539

ABSTRACT

BACKGROUND: Acute heart failure (AHF) is one of the most common cardiovascular diseases. Early diagnosis and prognosis are essential, as they can eventually lead to a fatal condition. Recently, brain natriuretic peptide (BNP) has been recognized as one of the most popular biomarkers for AHF. Changes in glomerular filtration rate (GFR) are often observed in AHF. METHODS: We searched PubMed, Google Scholar, and ScienceDirect between March and June 2023. Original case control studies written in English that assessed levels oh BNP in AHF were included. Systematic reviews, letters to editor, correspondence, comprehensive reviews, and duplicated studies were excluded. Funnel plots were constructed to assess publication bias. RESULTS: A total of 9 studies were selected and we obtained the mean difference (MD) of BNP level to be 2.57 (95% CI: 1.35, 3.78), and GFR to be -15.52, (95% CI: -23.35, -7.70) in AHF patients. Sensitivity analyses supported the robustness of the outcome. CONCLUSION: Results indicated that BNP was a promising prognostic biomarker of AHF, whereas GFR was found to be negatively correlated with AHF.


Subject(s)
Heart Failure , Natriuretic Peptide, Brain , Humans , Glomerular Filtration Rate , Acute Disease , Prognosis , Biomarkers , Heart Failure/diagnosis , Heart Failure/complications , Peptide Fragments
18.
Phys Chem Chem Phys ; 26(5): 4166-4173, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38230486

ABSTRACT

This paper provides a detailed analysis of pure CsPbIBr2 and 4% Ce-doped CsPbIBr2 perovskite films, emphasizing their structural, optical and photovoltaic properties. X-ray diffraction confirms a predominant cubic perovskite phase in both samples, with Ce doping leading to the increased crystal size (21 nm to 32 nm). UV-vis spectroscopy reveals a reduced bandgap energy (2.2 eV to 2.1 eV) with Ce doping. Dielectric constant analysis indicates the enhanced permittivity of the Ce-doped sample, crucial for solar-cell light trapping. Energy band structure analysis demonstrates improved photovoltaic cell performance with Ce doping, yielding higher open-circuit voltage, short-circuit current, and efficiency (9.71%) compared to pure CsPbIBr2 (8.02%). Ce doping mitigates electron-hole recombination, enhancing cell stability, electron affinity, and power output. This research underscores the potential of cost-effective, efficient, and stable CsPbIBr2 perovskite solar cells.

19.
ACS Omega ; 9(2): 2123-2133, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38250403

ABSTRACT

BACKGROUND: Wheat, an important cereal crop, is commonly cultivated in arid and semiarid areas, and therefore, it often experiences water deficit conditions. The consequences of induced stress on wheat can be mitigated through vermicompost amendments. To address drought stress on wheat seedlings, a pot experiment was conducted in the wire-house in which two contrasting wheat cultivars, Faisalabad-08 (drought-tolerant) and Galaxy-13 (drought-sensitive), were exposed to three water level conditions: well-watered [D0, 70% of field capacity (FC)], moderate drought (D1, 45% FC), and severe drought (D2, 30% FC). Four rates of vermicompost, derived from cow dung enriched with cellulolytic microbes, were applied (VT0, control; VT1, 4 t ha-1; VT2, 6 t ha-1; and VT3, 8 t ha-1) to the experiment. Data on various physiological, biochemical, and enzymatic antioxidants were recorded. RESULTS: Our results demonstrated that the drought treatments significantly reduced nutrient accumulation, chlorophyll and SPAD values, and carotenoid content in both cultivars where the maximum reduction was recorded for severe drought stress. Nonetheless, the application of vermicompost significantly improved these traits, and statistically maximum chlorophyll contents, SPAD value, and total carotenoid contents were observed for VT1 in both cultivars under drought treatments. While the lowest chlorophyll and carotenoid contents were recorded for untreated replicated pots. Among the cultivars, Faisalabad-08 exhibited greater resistance to drought, as evidenced by higher values of the aforementioned traits compared to Galaxy-13. Soil-applied vermicompost also showed a positive influence on antioxidant enzyme activities in both wheat cultivars grown under well-watered as well as water-scarce conditions. CONCLUSIONS: The findings of this study revealed that drought conditions substantially decreased the enzymatic antioxidants and physiological and biochemical attributes of the wheat crop. However, soil-applied vermicompost, particularly at an optimum rate, had a positive impact on the wheat seedlings under drought conditions. Moving forward, exploring the potential of utilizing cellulolytic microbe-enriched cow dung vermicompost stands as a promising avenue to mitigate the detrimental effects of water stress on wheat. Further research in this direction could offer substantial insights into enhancing wheat resilience and productivity under water stress conditions.

20.
Small ; 20(7): e2304590, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37800619

ABSTRACT

Over the past decade, solid-state cholesteric liquid crystals (CLCsolid ) have emerged as a promising photonic material, heralding new opportunities for the advancement of optical photonic biosensors and actuators. The periodic helical structure of CLCsolid s gives rise to their distinctive capability of selectively reflecting incident radiation, rendering them highly promising contenders for a wide spectrum of photonic applications. Extensive research is conducted on utilizing CLCsolid 's optical characteristics to create optical sensors for bioassays, diagnostics, and environmental monitoring. This review provides an overview of emerging technologies in the field of interpenetrating polymeric network-CLCsolid (IPN) and CLCsolid -based optical sensors, including their structural designs, processing, essential materials, working principles, and fabrication methodologies. The review concludes with a forward-looking perspective, addressing current challenges and potential trajectories for future research.

SELECTION OF CITATIONS
SEARCH DETAIL