Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Matrix Biol ; 83: 26-47, 2019 10.
Article in English | MEDLINE | ID: mdl-31288084

ABSTRACT

Metastasis is a major cause of death in cancer patients. The extracellular matrix molecule tenascin-C is a known promoter of metastasis, however the underlying mechanisms are not well understood. To further analyze the impact of tenascin-C on cancer progression we generated MMTV-NeuNT mice that develop spontaneous mammary tumors, on a tenascin-C knockout background. We also developed a syngeneic orthotopic model in which tumor cells derived from a MMTV-NeuNT tumor. Tumor cells were transfected with control shRNA or with shRNA to knockdown tenascin-C expression and, were grafted into the mammary gland of immune competent, wildtype or tenascin-C knockout mice. We show that stromal-derived tenascin-C increases metastasis by reducing apoptosis and inducing the cellular plasticity of cancer cells located in pulmonary blood vessels invasions (BVI), before extravasation. We characterized BVI as organized structures of tightly packed aggregates of proliferating tumor cells with epithelial characteristics, surrounded by Fsp1+ cells, internally located platelets and, a luminal monolayer of endothelial cells. We found extracellular matrix, in particular, tenascin-C, between the stromal cells and the tumor cell cluster. In mice lacking stromal-derived tenascin-C, the organization of pulmonary BVI was significantly affected, revealing novel functions of host-derived tenascin-C in supporting the integrity of the endothelial cell coat, increasing platelet abundance, tumor cell survival, epithelial plasticity, thereby promoting overall lung metastasis. Many effects of tenascin-C observed in BVI including enhancement of cellular plasticity, survival and migration, could be explained by activation of TGF-ß signaling. Finally, in several human cancers, we also observed BVI to be surrounded by an endothelial monolayer and to express tenascin-C. Expression of tenascin-C is specific to BVI and is not observed in lymphatic vascular invasions frequent in breast cancer, which lack an endothelial lining. Given that BVI have prognostic significance for many tumor types, such as shorter cancer patient survival, increased metastasis, vessel occlusion, and organ failure, our data revealing a novel mechanism by which stromal tenascin-C promotes metastasis in human cancer, may have potential for diagnosis and therapy.


Subject(s)
Blood Vessels/pathology , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/pathology , Receptor, ErbB-2/genetics , Tenascin/genetics , Animals , Blood Vessels/metabolism , Cell Line, Tumor , Female , Gene Knockout Techniques , Humans , Lung Neoplasms/blood supply , Lung Neoplasms/genetics , Mammary Neoplasms, Experimental/blood supply , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Transgenic , Rats , Signal Transduction , Stromal Cells , Tenascin/metabolism , Transforming Growth Factor beta/metabolism
2.
Cancer Res ; 78(4): 950-961, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29259017

ABSTRACT

Tenascin-C is an extracellular matrix molecule that drives progression of many types of human cancer, but the basis for its actions remains obscure. In this study, we describe a cell-autonomous signaling mechanism explaining how tenascin-C promotes cancer cell migration in the tumor microenvironment. In a murine xenograft model of advanced human osteosarcoma, tenascin-C and its receptor integrin α9ß1 were determined to be essential for lung metastasis of tumor cells. We determined that activation of this pathway also reduced tumor cell-autonomous expression of target genes for the transcription factor YAP. In clinical specimens, a genetic signature comprising four YAP target genes represents prognostic impact. Taken together, our results illuminate how tumor cell deposition of tenascin-C in the tumor microenvironment promotes invasive migration and metastatic progression.Significance: These results illuminate how the extracellular matrix glycoprotein tenascin-C in the tumor microenvironment promotes invasive migration and metastatic progression by employing integrin α9ß1, abolishing actin stress fiber formation, inhibiting YAP and its target gene expression, with potential implications for cancer prognosis and therapy. Cancer Res; 78(4); 950-61. ©2017 AACR.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Integrins/metabolism , Phosphoproteins/antagonists & inhibitors , Tenascin/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Heterografts , Humans , Integrins/genetics , Mice , Mice, Nude , Neoplasm Metastasis , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/pathology , Phosphoproteins/genetics , Phosphoproteins/metabolism , Signal Transduction , Tenascin/genetics , Transcription Factors , Transfection , Tumor Microenvironment , YAP-Signaling Proteins
3.
Cell Rep ; 17(10): 2607-2619, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27926865

ABSTRACT

High expression of the extracellular matrix component tenascin-C in the tumor microenvironment correlates with decreased patient survival. Tenascin-C promotes cancer progression and a disrupted tumor vasculature through an unclear mechanism. Here, we examine the angiomodulatory role of tenascin-C. We find that direct contact of endothelial cells with tenascin-C disrupts actin polymerization, resulting in cytoplasmic retention of the transcriptional coactivator YAP. Tenascin-C also downregulates YAP pro-angiogenic target genes, thus reducing endothelial cell survival, proliferation, and tubulogenesis. Glioblastoma cells exposed to tenascin-C secrete pro-angiogenic factors that promote endothelial cell survival and tubulogenesis. Proteomic analysis of their secretome reveals a signature, including ephrin-B2, that predicts decreased survival of glioma patients. We find that ephrin-B2 is an important pro-angiogenic tenascin-C effector. Thus, we demonstrate dual activities for tenascin-C in glioblastoma angiogenesis and uncover potential targeting and prediction opportunities.


Subject(s)
Ephrin-B2/genetics , Glioblastoma/drug therapy , Neovascularization, Pathologic/drug therapy , Nuclear Proteins/genetics , Tenascin/administration & dosage , Transcription Factors/genetics , Animals , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Proteomics , Signal Transduction , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
4.
Oncotarget ; 7(36): 57851-57865, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27506939

ABSTRACT

The neuropilin-plexin receptor complex regulates tumor cell migration and proliferation and thus is an interesting therapeutic target. High expression of neuropilin-1 is indeed associated with a bad prognosis in glioma patients. Q-RTPCR and tissue-array analyses showed here that Plexin-A1 is highly expressed in glioblastoma and that the highest level of expression correlates with the worse survival of patients. We next identified a developmental and tumor-associated pro-angiogenic role of Plexin-A1. Hence, by using molecular simulations and a two-hybrid like assay in parallel with biochemical and cellular assays we developed a specific Plexin-A1 peptidic antagonist disrupting transmembrane domain-mediated oligomerization of the receptor and subsequent signaling and functional activity. We found that this peptide exhibits anti-tumor activity in vivo on different human glioblastoma models including glioma cancer stem cells. Thus, screening Plexin-A1 expression and targeting Plexin-A1 in glioblastoma patients exhibit diagnostic and therapeutic value.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/pathology , Glioma/pathology , Neovascularization, Pathologic/prevention & control , Nerve Tissue Proteins/antagonists & inhibitors , Peptides/pharmacology , Receptors, Cell Surface/antagonists & inhibitors , Animals , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chick Embryo , Chorioallantoic Membrane/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Glioma/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Nerve Tissue Proteins/metabolism , Protein Domains , Receptors, Cell Surface/metabolism , Tissue Array Analysis , Zebrafish
5.
Org Biomol Chem ; 12(47): 9601-20, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25338628

ABSTRACT

A series of bis-, tris- and tetra-phosphonated pyridine ligands is presented. In view of their potential use as chelates for radiopharmaceutical applications, the physico-chemical properties of the ligands and of their Co(II), Ni(II), Cu(II), and Zn(II) complexes were studied by means of potentiometry and UV-Vis absorption spectroscopy. The pKa values of the ligands and of the complexes, as well as the stability constants for the formation of the complexes, are presented. The kinetic aspects of the formation of Cu(II) complexes and of their dissociation in acidic media were studied by means of stopped flow experiments, and the stability of the Cu(II) complex toward reduction to Cu(I) was investigated by cyclic voltammetry and by titration with different reducing agents. The different thermodynamic and kinetic aspects of the polyphosphonated ligands were compared with regard to the impact of the number of phosphonic acid functions. Considering the very promising properties for complexation, preliminary SPECT/CT imaging experiments were carried out on mice with (99m)Tc using the bis- and tetra-phosphonated ligands L(2) and L(1). Finally, a bifunctional version of chelate L(1), L*, was used to label MTn12, a rat monoclonal antibody with both specificity and relatively high affinity for murine tenascin-C. The labeling was monitored by MALDI/MS spectrometry and the affinity of the labeled antibody was checked by immunostaining experiments. After chelation with (99m)Tc, the (99m)Tc-L*-MTn12 antibody was injected into a transgenic mouse with breast cancer and the biodistribution of the labeled antibody was followed by SPECT/CT imaging.


Subject(s)
Chelating Agents/chemistry , Coordination Complexes/chemistry , Organophosphonates/chemistry , Pyridines/chemistry , Radiopharmaceuticals/chemistry , Animals , Antibodies, Monoclonal/chemistry , Breast Neoplasms/diagnosis , Female , Ligands , Mice , Mice, Transgenic , Rats , Tenascin/analysis , Thermodynamics , Tissue Distribution , Tomography, Emission-Computed, Single-Photon
6.
Oncotarget ; 5(21): 10529-45, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25301723

ABSTRACT

Angiogenesis represents a rate-limiting step during tumor progression. Targeting angiogenesis is already applied in cancer treatment, yet limits of anti-angiogenic therapies have emerged, notably because tumors adapt and recur after treatment. Therefore, there is a strong need to better understand the molecular and cellular mechanisms underlying tumor angiogenesis. Using the RIP1-Tag2 transgenic murine model, we identified 298 genes that are deregulated during the angiogenic switch, revealing an ingression/expansion of specific stromal cell types including endothelial cells and pericytes, but also macrophages and perivascular mesenchymal cells. Canonical TGF-ß signaling is up-regulated during the angiogenic switch, especially in tumor-associated macrophages and fibroblasts. The matrisome, comprising extracellular matrix (ECM) and ECM-associated molecules, is significantly enriched, which allowed us to define the AngioMatrix signature as the 110 matrisomal genes induced during the RIP1-Tag2 angiogenic switch. Several AngioMatrix molecules were validated at expression level. Ablation of tenascin-C, one of the most highly induced ECM molecules during the switch, resulted in reduced angiogenesis confirming its important role. In human glioma and colorectal samples, the AngioMatrix signature correlates with the expression of endothelial cell markers, is increased with tumor progression and finally correlates with poor prognosis demonstrating its diagnostic and therapeutic potential.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Extracellular Matrix/metabolism , GTPase-Activating Proteins/physiology , Gene Expression Profiling , Glioma/genetics , Neovascularization, Pathologic/genetics , Animals , Biomarkers, Tumor/metabolism , Cells, Cultured , Colorectal Neoplasms/blood supply , Colorectal Neoplasms/mortality , Fibroblasts/cytology , Fibroblasts/metabolism , Glioma/blood supply , Glioma/mortality , Humans , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Prognosis , Stromal Cells/cytology , Stromal Cells/metabolism , Survival Rate
7.
PLoS One ; 9(10): e111336, 2014.
Article in English | MEDLINE | ID: mdl-25347196

ABSTRACT

Laminins (LM), basement membrane molecules and mediators of epithelial-stromal communication, are crucial in tissue homeostasis. Inflammatory Bowel Diseases (IBD) are multifactorial pathologies where the microenvironment and in particular LM play an important yet poorly understood role in tissue maintenance, and in cancer progression which represents an inherent risk of IBD. Here we showed first that in human IBD colonic samples and in murine colitis the LMα1 and LMα5 chains are specifically and ectopically overexpressed with a concomitant nuclear p53 accumulation. Linked to this observation, we provided a mechanism showing that p53 induces LMα1 expression at the promoter level by ChIP analysis and this was confirmed by knockdown in cell transfection experiments. To mimic the human disease, we induced colitis and colitis-associated cancer by chemical treatment (DSS) combined or not with a carcinogen (AOM) in transgenic mice overexpressing LMα1 or LMα5 specifically in the intestine. We demonstrated that high LMα1 or LMα5 expression decreased susceptibility towards experimentally DSS-induced colon inflammation as assessed by histological scoring and decrease of pro-inflammatory cytokines. Yet in a pro-oncogenic context, we showed that LM would favor tumorigenesis as revealed by enhanced tumor lesion formation in both LM transgenic mice. Altogether, our results showed that nuclear p53 and associated overexpression of LMα1 and LMα5 protect tissue from inflammation. But in a mutation setting, the same LM molecules favor progression of IBD into colitis-associated cancer. Our transgenic mice represent attractive new models to acquire knowledge about the paradoxical effect of LM that mediate either tissue reparation or cancer according to the microenvironment. In the early phases of IBD, reinforcing basement membrane stability/organization could be a promising therapeutic approach.


Subject(s)
Carcinoma/metabolism , Colonic Neoplasms/metabolism , Inflammatory Bowel Diseases/metabolism , Laminin/metabolism , Animals , Caco-2 Cells , Cytokines/metabolism , HCT116 Cells , HT29 Cells , Humans , Laminin/genetics , Mice , Tumor Suppressor Protein p53/metabolism
8.
Cell Rep ; 8(6): 1714-1721, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25220456

ABSTRACT

Breast cancer is still a deadly disease despite major achievements in targeted therapies designed to block ligands or ligand-binding subunits of major tyrosine kinase receptors. Relapse is significant and metastases deleterious, which demands novel strategies for fighting this disease. Here, we report a proof-of-concept experiment demonstrating that small peptides interfering with the transmembrane domain of the tyrosine kinase epidermal growth factor receptor ErbB2 exhibit anticancer properties when used at micromolar dosages in a genetically engineered mouse model of breast cancer. Different assays demonstrate the specificity of the ErbB2-targeting peptide, which induces long-term reduction of ErbB2 phosphorylation and Akt signaling consistent with reduced tumor cell proliferation and increased survival. Microcomputed tomography analysis established the antimetastatic activity of the peptide and its impact on primary tumor growth. This reveals the interior of the cell membrane as an unexplored dimension for drug design.


Subject(s)
Receptor, ErbB-2/metabolism , Amino Acid Sequence , Animals , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Kaplan-Meier Estimate , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/secondary , MCF-7 Cells , Mice , Mice, Transgenic , Molecular Sequence Data , Peptides/chemistry , Peptides/therapeutic use , Peptides/toxicity , Phosphorylation/drug effects , Protein Multimerization , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Tomography, X-Ray Computed
9.
Cell Rep ; 5(2): 482-92, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24139798

ABSTRACT

The extracellular matrix molecule tenascin-C (TNC) is a major component of the cancer-specific matrix, and high TNC expression is linked to poor prognosis in several cancers. To provide a comprehensive understanding of TNC's functions in cancer, we established an immune-competent transgenic mouse model of pancreatic ß-cell carcinogenesis with varying levels of TNC expression and compared stochastic neuroendocrine tumor formation in abundance or absence of TNC. We show that TNC promotes tumor cell survival, the angiogenic switch, more and leaky vessels, carcinoma progression, and lung micrometastasis. TNC downregulates Dickkopf-1 (DKK1) promoter activity through the blocking of actin stress fiber formation, activates Wnt signaling, and induces Wnt target genes in tumor and endothelial cells. Our results implicate DKK1 downregulation as an important mechanism underlying TNC-enhanced tumor progression through the provision of a proangiogenic tumor microenvironment.


Subject(s)
Down-Regulation , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Tenascin/metabolism , Wnt Proteins/metabolism , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Signal Transduction , Tenascin/deficiency , Tenascin/genetics , Wnt Proteins/antagonists & inhibitors
10.
Cell Mol Life Sci ; 68(19): 3175-99, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21818551

ABSTRACT

Tenascin-C is an extracellular matrix glycoprotein that is specifically and transiently expressed upon tissue injury. Upon tissue damage, tenascin-C plays a multitude of different roles that mediate both inflammatory and fibrotic processes to enable effective tissue repair. In the last decade, emerging evidence has demonstrated a vital role for tenascin-C in cardiac and arterial injury, tumor angiogenesis and metastasis, as well as in modulating stem cell behavior. Here we highlight the molecular mechanisms by which tenascin-C mediates these effects and discuss the implications of mis-regulated tenascin-C expression in driving disease pathology.


Subject(s)
Tenascin/physiology , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Gene Expression Regulation , Humans , Mice , Myocardial Infarction/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/physiology , Neoplasms/diagnosis , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Rats , Stem Cells/metabolism , Stem Cells/pathology , Tenascin/blood , Tenascin/chemistry , Vascular Diseases/metabolism , Vascular Diseases/pathology , Wound Healing/physiology
11.
Diagn Mol Pathol ; 19(4): 209-17, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21052000

ABSTRACT

INTRODUCTION: Unselected lung cancer patients seem unable to gain in terms of survival from treatment with epidermal growth factor receptor (EGFR) inhibitors. Screening for specific molecular targets involves detection of EGFR1 mutations. The aim of our study was to develop a simple set of tests to detect mutations at the tyrosine kinase domain of the EGFR1 gene while avoiding expensive DNA sequencing to select patients eligible for treatment. METHODS: DNA samples from 85 adenocarcinoma patients were analyzed. The cohort consisted of 65 female (40 nonsmokers and 25 smokers) and 20 male patients [15 smokers and 5 diagnosed with bronchioloalveolar carcinomas (BAC)]. Different restriction enzymes were identified that recognize mutations at the EGFR1's tyrosine kinase domain. Biocomputing and polymerase chain reaction were used to develop molecular screening tools. RESULTS: Eight mutations were found in 7 patients, of which 5 were female nonsmokers (14.3%), 1 was a male nonsmoker, and 1 a male smoker. Among the mutations that were discovered, 5 (71%) were found at exon 19 and 3 (29%) at exon 20. At exon 19, 4 were deletions found in nonsmoker women, whereas the fifth was a deletion-insertion found in a nonsmoker male patient with BAC. At exon 20, 3 mutations were identified in 2 patients: a duplication (in a nonsmoker woman) and 2 substitutions (in a smoker male with BAC). No mutations were found at exons 18 and 21. Gene copy number was increased in 6 patients (4 female and 2 male) with the highest being found in a smoking female patient diagnosed with BAC. CONCLUSION: Mapping of EGFR1 mutations by alternative methods should be used in the screening of patients with non-small cell lung cancer who are candidates for EGFR inhibitor treatment. Patients with an increased EGFR1 copy number could benefit from the monoclonal antibody therapy.


Subject(s)
ErbB Receptors/genetics , Mutation , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Aged , Cohort Studies , DNA/genetics , DNA/metabolism , DNA Restriction Enzymes/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
12.
Cell Cycle ; 9(8): 1480-6, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20372069

ABSTRACT

SOX2 is a master pluripotency controller that was recently identified as a novel major oncogene, recurrently amplified and activated in Squamous Cell Carcinoma (SCC). These studies have used a similar strategy of chromosomal aberrations screening to identify the SOX2 locus as one of the most frequently amplified site over the SCC genome. They have further highlighted the recurrent SOX2 activation and its necessary role for squamous cell survival. Finally, they showed that SOX2 is also involved in the early steps of lung SCC, as participating to transform human bronchial epithelial cells. Furthermore, SOX2 overexpression can induce the expression of the squamous markers p63 and keratin 6, supporting the idea that SOX2 might be implicated in SCC differentiation. In addition, SOX2 overexpression stimulates lung squamous cell migration. However, neither study assessed the impact of the recurrent activation of SOX2 in advanced primary tumors nor how SOX2 may mechanistically participate to tumor progression and aggressiveness. Here we present these studies and additional data from integrative transcriptomic analyses of primary lung SCC that altogether shed new light and open new exciting perspectives on the multiples roles that SOX2 exerts all along SCC carcinogenesis.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Lung Neoplasms/metabolism , SOXB1 Transcription Factors/physiology , Carcinoma, Squamous Cell/pathology , Cell Differentiation , Genetic Pleiotropy , Humans , Keratin-6/metabolism , Lung Neoplasms/pathology , Neoplastic Stem Cells/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
13.
PLoS One ; 5(1): e8960, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-20126410

ABSTRACT

Squamous cell carcinoma (SCC) of the lung is a frequent and aggressive cancer type. Gene amplifications, a known activating mechanism of oncogenes, target the 3q26-qter region as one of the most frequently gained/amplified genomic sites in SCC of various types. Here, we used array comparative genomic hybridization to delineate the consensus region of 3q26.3 amplifications in lung SCC. Recurrent amplifications occur in 20% of lung SCC (136 tumors in total) and map to a core region of 2 Mb (Megabases) that encompasses SOX2, a transcription factor gene. Intense SOX2 immunostaining is frequent in nuclei of lung SCC, indicating potential active transcriptional regulation by SOX2. Analyses of the transcriptome of lung SCC, SOX2-overexpressing lung epithelial cells and embryonic stem cells (ESCs) reveal that SOX2 contributes to activate ESC-like phenotypes and provide clues pertaining to the deregulated genes involved in the malignant phenotype. In cell culture experiments, overexpression of SOX2 stimulates cellular migration and anchorage-independent growth while SOX2 knockdown impairs cell growth. Finally, SOX2 over-expression in non-tumorigenic human lung bronchial epithelial cells is tumorigenic in immunocompromised mice. These results indicate that the SOX2 transcription factor, a major regulator of stem cell function, is also an oncogene and a driver gene for the recurrent 3q26.33 amplifications in lung SCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Chromosomes, Human, Pair 3 , Lung Neoplasms/genetics , SOXB1 Transcription Factors/genetics , Humans
14.
Cell Cycle ; 9(2): 321-7, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20023397

ABSTRACT

Recent studies have shown that embryonic stem cell-like molecular phenotypes are commonly activated in human epithelial primary tumors and are linked to adverse patient prognosis.(1,2) However it remains unclear whether these correlations to outcome are linked to the differentiation status of the human primary tumors(1) or represent molecular reminiscences of epithelial cancer stem cells.(2) In addition, while it has been demonstrated that leukemic cancer stem cells re-acquire an embryonic stem cell-like phenotype,(3,4) the molecular basis of stem cell function in epithelial cancer stem cells has not been investigated. Here we show that a normal adult tissue-specific stem cell molecular phenotype is commonly activated in epithelial cancer stem cells and for the first time provide evidence that enrichment in cancer stem cells-specific molecular signatures are correlated to highly aggressive tumor phenotypes in human epithelial cancers.


Subject(s)
Adult Stem Cells/metabolism , Breast Neoplasms/pathology , Lung Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Adult Stem Cells/cytology , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Neoplastic Stem Cells/cytology , Phenotype , Prognosis
15.
Nature ; 452(7187): 650-3, 2008 Apr 03.
Article in English | MEDLINE | ID: mdl-18385740

ABSTRACT

Continuous turnover of epithelia is ensured by the extensive self-renewal capacity of tissue-specific stem cells. Similarly, epithelial tumour maintenance relies on cancer stem cells (CSCs), which co-opt stem cell properties. For most tumours, the cellular origin of these CSCs and regulatory pathways essential for sustaining stemness have not been identified. In murine skin, follicular morphogenesis is driven by bulge stem cells that specifically express CD34. Here we identify a population of cells in early epidermal tumours characterized by phenotypic and functional similarities to normal bulge skin stem cells. This population contains CSCs, which are the only cells with tumour initiation properties. Transplants derived from these CSCs preserve the hierarchical organization of the primary tumour. We describe beta-catenin signalling as being essential in sustaining the CSC phenotype. Ablation of the beta-catenin gene results in the loss of CSCs and complete tumour regression. In addition, we provide evidence for the involvement of increased beta-catenin signalling in malignant human squamous cell carcinomas. Because Wnt/beta-catenin signalling is not essential for normal epidermal homeostasis, such a mechanistic difference may thus be targeted to eliminate CSCs and consequently eradicate squamous cell carcinomas.


Subject(s)
Cell Transformation, Neoplastic , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Signal Transduction , Skin Neoplasms/pathology , beta Catenin/metabolism , Animals , Antigens, CD34/metabolism , Cell Line, Tumor , Cells, Cultured , Epidermis/pathology , Humans , Mice , Mice, Nude , Neoplasm Transplantation
16.
Cancer Genet Cytogenet ; 169(2): 102-13, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16938567

ABSTRACT

Historically, amplicon mapping and characterization of double minute (dmin) chromosomes content have been the ways to pinpoint important oncogenes. The COMA cell line established from a sarcoma contains DMs, some of them composed of material of the long arm of chromosome 3. To identify putative oncogenes on 3q that may be included in these dmins, we have analyzed the COMA cell line by microarray-based comparative genomic hybridization (array-CGH). We have detected the amplification of 1-Mb segment at 3q28, which contains the genes LPP, FLJ42393, and hsa-mir-28. Fluorescence in situ hybridization experiments confirmed the presence of numerous copies of 3q28 segment included in dmins. Further screening of eight undifferentiated primary sarcomas with 3q gains previously detected by chromosome CGH disclosed, in two cases, amplifications at 3q28 overlapping the 1-Mb segment amplified in COMA. To isolate target genes upregulated by gene dosage effect, we measured the transcription levels of every gene (in the RefSeq collection) located in the common region of amplification, selected expressed sequence tags (ESTs) and the micro-RNA hsa-mir-28 in the COMA cell line compared to one MFH cell line without alteration at 3q28. Expression levels of all transcripts were almost similar in both cell lines, except for two ESTs (AI338598 and BX118304) showing a 20-fold increase. These two transcripts are poorly characterized and their contribution to MFH carcinogenesis is difficult to evaluate.


Subject(s)
Chromosome Aberrations , Chromosomes, Human, Pair 3 , Sarcoma/genetics , Adult , Aged , Aged, 80 and over , Chromosome Mapping , Female , Gene Expression Profiling , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Oncogenes , Polymerase Chain Reaction/methods , Tumor Cells, Cultured
17.
Cancer Res ; 62(21): 6211-7, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-12414649

ABSTRACT

DNA gains targeting the 3q chromosome are common in head and neck squamous cell carcinomas, as well as in lung, ovarian, and cervical cancer. Several candidate oncogenes located on 3q were proposed, i.e., PIK3CA, p63, and eIF-5A2. However, none of these genes was found included in a narrow high-level amplification. Recently, microarray-based comparative genomic hybridization (array CGH) was developed for high-resolution screening of deletions and amplifications in tumor genomes. In this study, by microarray-based comparative genomic hybridization, we found a narrow 3q25.3 high-level amplification in a head and neck cancer cell line. We precisely delimited the 3-Mb length-amplified segment by semiquantitative PCR and measured the transcriptional level of every gene (RefSeq full-length mRNA) located inside this segment by cDNA microarray and quantitative reverse transcription-PCR. Four genes were overexpressed in three head and neck cancer cell lines with increased DNA copy number, compared with a control tongue cell line. We extended the transcriptional analysis of these four genes to 20 head and neck squamous cell carcinomas. Only one gene, cyclin L (ania-6a), is commonly overexpressed in primary tumors compared with corresponding normal tissues. This cyclin was previously pinpointed as a candidate for a role in promoting cell cycle entry. Thus, we propose cyclin L as a candidate oncogene in head and neck cancer.


Subject(s)
Carcinoma, Squamous Cell/genetics , Chromosomes, Human, Pair 3/genetics , Cyclins/genetics , Head and Neck Neoplasms/genetics , Chromosome Mapping , Humans , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL