Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 3686, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140498

ABSTRACT

Tumour hypoxia is associated with poor patient prognosis and therapy resistance. A unique transcriptional response is initiated by hypoxia which includes the rapid activation of numerous transcription factors in a background of reduced global transcription. Here, we show that the biological response to hypoxia includes the accumulation of R-loops and the induction of the RNA/DNA helicase SETX. In the absence of hypoxia-induced SETX, R-loop levels increase, DNA damage accumulates, and DNA replication rates decrease. Therefore, suggesting that, SETX plays a role in protecting cells from DNA damage induced during transcription in hypoxia. Importantly, we propose that the mechanism of SETX induction in hypoxia is reliant on the PERK/ATF4 arm of the unfolded protein response. These data not only highlight the unique cellular response to hypoxia, which includes both a replication stress-dependent DNA damage response and an unfolded protein response but uncover a novel link between these two distinct pathways.


Subject(s)
Cell Hypoxia , DNA Damage/genetics , DNA Helicases/metabolism , Gene Expression Regulation/genetics , Multifunctional Enzymes/metabolism , R-Loop Structures/genetics , RNA Helicases/metabolism , Unfolded Protein Response/genetics , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Cell Death/drug effects , Cell Death/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Chromatin Immunoprecipitation , DNA Helicases/genetics , Gene Expression Regulation/drug effects , Humans , Multifunctional Enzymes/genetics , Nucleic Acid Synthesis Inhibitors/pharmacology , Oxygen/pharmacology , R-Loop Structures/drug effects , RNA Helicases/genetics , RNA-Seq , Unfolded Protein Response/drug effects , Up-Regulation , Zinostatin/pharmacology , eIF-2 Kinase/metabolism
2.
iScience ; 23(11): 101668, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33134898

ABSTRACT

Inhibition of the ATR kinase has emerged as a therapeutically attractive means to target cancer since the development of potent inhibitors, which are now in clinical testing. We investigated a potential link between ATR inhibition and the autophagy process in esophageal cancer cells using four ATR inhibitors including two in clinical testing. The response to pharmacological ATR inhibitors was compared with genetic systems to investigate the ATR dependence of the effects observed. The ATR inhibitor, VX-970, was found to lead to an accumulation of p62 and LC3-II indicative of a blocked autophagy. This increase in p62 occurred post-transcriptionally and in all the cell lines tested. However, our data indicate that the accumulation of p62 occurred in an ATR-independent manner and was instead an off-target response to the ATR inhibitor. This study has important implications for the clinical response to pharmacological ATR inhibition, which in some cases includes the blockage of autophagy.

3.
FEBS J ; 286(8): 1543-1560, 2019 04.
Article in English | MEDLINE | ID: mdl-30715798

ABSTRACT

Double-stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection and is sensed primarily by RIG-I-like receptors (RLRs). Oligomerization of RLRs following binding to cytosolic dsRNA activates and nucleates self-assembly of the mitochondrial antiviral-signaling protein (MAVS). In the current signaling model, the caspase recruitment domains of MAVS form helical fibrils that self-propagate like prions to promote signaling complex assembly. However, there is no conclusive evidence that MAVS forms fibrils in cells or with the transmembrane anchor present. We show here with super-resolution light microscopy that MAVS activation by dsRNA induces mitochondrial membrane remodeling. Quantitative image analysis at imaging resolutions as high as 32 nm shows that in the cellular context, MAVS signaling complexes and the fibrils within them are smaller than 80 nm. The transmembrane domain of MAVS is required for its membrane remodeling, interferon signaling, and proapoptotic activities. We conclude that membrane tethering of MAVS restrains its polymerization and contributes to mitochondrial remodeling and apoptosis upon dsRNA sensing.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Interferon-beta/metabolism , Mitochondrial Membranes/metabolism , 3T3 Cells/virology , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Death/physiology , Cytosol/physiology , Fibroblasts/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Membrane Transport Proteins/metabolism , Mice , Mice, Knockout , Microscopy/methods , Mitochondrial Membranes/virology , Mitochondrial Precursor Protein Import Complex Proteins , Protein Domains , RNA, Double-Stranded/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Single-Cell Analysis/methods , West Nile Fever/metabolism
4.
J Cell Sci ; 132(6)2019 03 28.
Article in English | MEDLINE | ID: mdl-30765465

ABSTRACT

Purified vascular endothelial cell (EC) growth factor receptor-2 (VEGFR2) auto-phosphorylates upon VEGF-A occupation in vitro, arguing that VEGR2 confers its mitotic and viability signaling in and of itself. Herein, we show that, in ECs, VEGFR2 function requires concurrent C3a/C5a receptor (C3ar1/C5ar1) and IL-6 receptor (IL-6R)-gp130 co-signaling. C3ar1/C5ar1 or IL-6R blockade totally abolished VEGFR2 auto-phosphorylation, downstream Src, ERK, AKT, mTOR and STAT3 activation, and EC cell cycle entry. VEGF-A augmented production of C3a/C5a/IL-6 and their receptors via a two-step p-Tyk2/p-STAT3 process. Co-immunoprecipitation analyses, confocal microscopy, ligand pulldown and bioluminescence resonance energy transfer assays all indicated that the four receptors are physically interactive. Angiogenesis in murine day 5 retinas and in adult tissues was accelerated when C3ar1/C5ar1 signaling was potentiated, but repressed when it was disabled. Thus, C3ar1/C5ar1 and IL-6R-gp130 joint activation is needed to enable physiological VEGFR2 function.


Subject(s)
Cytokine Receptor gp130/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Complement/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Cell Proliferation , Endothelial Cells/metabolism , Interleukin-6/metabolism , Mice , Neovascularization, Physiologic , Signal Transduction , Vascular Endothelial Growth Factors/metabolism
5.
EMBO J ; 33(23): 2814-28, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25361605

ABSTRACT

IκBα resides in the cytosol where it retains the inducible transcription factor NF-κB. We show that IκBα also localises to the outer mitochondrial membrane (OMM) to inhibit apoptosis. This effect is especially pronounced in tumour cells with constitutively active NF-κB that accumulate high amounts of mitochondrial IκBα as a NF-κB target gene. 3T3 IκBα(-/-) cells also become protected from apoptosis when IκBα is specifically reconstituted at the OMM. Using various IκBα mutants, we demonstrate that apoptosis inhibition and NF-κB inhibition can be functionally and structurally separated. At mitochondria, IκBα stabilises the complex of VDAC1 and hexokinase II (HKII), thereby preventing Bax recruitment to VDAC1 and the release of cytochrome c for apoptosis induction. When IκBα is reduced in tumour cells with constitutively active NF-κB, they show an enhanced response to anticancer treatment in an in vivo xenograft tumour model. Our results reveal the unexpected activity of IκBα in guarding the integrity of the OMM against apoptosis induction and open possibilities for more specific interference in tumours with deregulated NF-κB.


Subject(s)
Apoptosis/physiology , I-kappa B Proteins/metabolism , Mitochondrial Membranes/physiology , Models, Biological , NF-kappa B/metabolism , Animals , Blotting, Western , Cell Line , Cytochromes c/metabolism , Female , Flow Cytometry , Hexokinase/metabolism , Humans , Immunoprecipitation , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Mitochondrial Membranes/metabolism , NF-KappaB Inhibitor alpha , Oligonucleotides/genetics , Voltage-Dependent Anion Channel 1/metabolism , Xenograft Model Antitumor Assays
6.
Mitochondrion ; 19 Pt A: 20-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24933571

ABSTRACT

Complex II of the respiratory chain (RC) recently emerged as a prominent regulator of cell death. In both cancer cells as well as neurodegenerative diseases, mutations in subunits have been found along with other genetic alterations indirectly affecting this complex. Anticancer compounds were developed that target complex II and cause cell death in a tumor-specific way. Our mechanistic understanding of how complex II is activated for cell death induction has recently been made clearer in recent studies, the results of which are covered in this review. This protein assembly is specifically activated for cell death via the dissociation of its SDHA and SDHB subunits from the membrane-anchoring proteins through pH change or mitochondrial Ca(2+) influx. The SDH activity contained in the SDHA/SDHB subcomplex remains intact and then generates, in an uncontrolled fashion, excessive amounts of reactive oxygen species (ROS) for cell death. Future studies on this mitochondrial complex will further elucidate it as a target for cancer treatments and reveal its role as a nexus for many diverse stimuli in cell death signaling.


Subject(s)
Electron Transport Chain Complex Proteins/physiology , Mitochondria/physiology , Animals , Cell Death/physiology , Energy Metabolism/physiology , Gene Expression Regulation/physiology
7.
J Cell Sci ; 127(Pt 8): 1816-28, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24522192

ABSTRACT

The permeability transition pore (PT-pore) mediates cell death through the dissipation of the mitochondrial membrane potential (ΔΨm). Because the exact composition of the PT-pore is controversial, it is crucial to investigate the actual molecular constituents and regulators of this complex. We found that mitochondrial creatine kinase-1 (CKMT1) is a universal and functionally necessary gatekeeper of the PT-pore, as its depletion induces mitochondrial depolarization and apoptotic cell death. This can be inhibited efficiently by bongkrekic acid, a compound that is widely used to inhibit the PT-pore. However, when the 'classical' PT-pore subunits cyclophilin D and VDAC1 are pharmacologically inhibited or their expression levels reduced, mitochondrial depolarization by CKMT1 depletion remains unaffected. At later stages of drug-induced apoptosis, CKMT1 levels are reduced, suggesting that CKMT1 downregulation acts to reinforce the commitment of cells to apoptosis. A novel high-molecular-mass CKMT1 complex that is distinct from the known CKMT1 octamer disintegrates upon treatment with cytotoxic drugs, concomitant with mitochondrial depolarization. Our study provides evidence that CKMT1 is a key regulator of the PT-pore through a complex that is distinct from the classical PT-pore.


Subject(s)
Creatine Kinase/physiology , Mitochondrial Membrane Transport Proteins/metabolism , Apoptosis , Bongkrekic Acid/pharmacology , Caspase 9/metabolism , HEK293 Cells , HeLa Cells , Humans , Membrane Potential, Mitochondrial , Mitochondrial Permeability Transition Pore , Permeability , Suppressor of Cytokine Signaling Proteins/metabolism , Ubiquitination , Voltage-Dependent Anion Channel 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL