Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Pharmacol Res ; 205: 107231, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815878

ABSTRACT

We previously demonstrated that mice carrying natural mtDNA variants of the FVB/NJ strain (m.7778 G>T in the mt-Atp8 gene in mitochondrial complex V), namely C57BL/6 J-mtFVB/NJ (B6-mtFVB), exhibited (i) partial protection from experimental skin inflammatory diseases in an anti-murine type VII collagen antibody-induced skin inflammation model and psoriasiform dermatitis model; (ii) significantly altered metabolites, including short-chain fatty acids, according to targeted metabolomics of liver, skin and lymph node samples; and (iii) a differential composition of the gut microbiota according to bacterial 16 S rRNA gene sequencing of stool samples compared to wild-type C57BL/6 J (B6) mice. To further dissect these disease-contributing factors, we induced an experimental antibody-induced skin inflammatory disease in gnotobiotic mice. We performed shotgun metagenomic sequencing of caecum contents and untargeted metabolomics of liver, CD4+ T cell, and caecum content samples from conventional B6-mtFVB and B6 mice. We identified D-glucosamine as a candidate mediator that ameliorated disease severity in experimental antibody-induced skin inflammation by modulating immune cell function in T cells, neutrophils and macrophages. Because mice carrying mtDNA variants of the FVB/NJ strain show differential disease susceptibility to a wide range of experimental diseases, including diet-induced atherosclerosis in low-density lipoprotein receptor knockout mice and collagen antibody-induced arthritis in DBA/1 J mice, this experimental approach is valuable for identifying novel therapeutic options for skin inflammatory conditions and other chronic inflammatory diseases to which mice carrying specific mtDNA variants show differential susceptibility.


Subject(s)
DNA, Mitochondrial , Mice, Inbred C57BL , Animals , DNA, Mitochondrial/genetics , Gastrointestinal Microbiome , Mice , Skin/metabolism , Skin/microbiology , Skin/pathology , Dermatitis/immunology , Dermatitis/microbiology , Dermatitis/genetics , Dermatitis/drug therapy , Dermatitis/metabolism , Inflammation/genetics , Inflammation/immunology , Disease Models, Animal , Male , Germ-Free Life , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/genetics , Cecum/microbiology , Chronic Disease , Female
2.
Microbiome ; 11(1): 232, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37864204

ABSTRACT

BACKGROUND: Like its human counterpart, canine atopic dermatitis (cAD) is a chronic relapsing condition; thus, most cAD-affected dogs will require lifelong treatment to maintain an acceptable quality of life. A potential intervention is modulation of the composition of gut microbiota, and in fact, probiotic treatment has been proposed and tried in human atopic dermatitis (AD) patients. Since dogs are currently receiving intensive medical care, this will be the same option for dogs, while evidence of gut dysbiosis in cAD is still missing, although skin microbial profiling in cAD has been conducted in several studies. Therefore, we conducted a comprehensive analysis of both gut and skin microbiota in cAD in one specific cAD-predisposed breed, Shiba Inu. Additionally, we evaluated the impact of commonly used medical management on cAD (Janus kinase; JAK inhibitor, oclacitinib) on the gut and skin microbiota. Furthermore, we genotyped the Shiba Inu dogs according to the mitochondrial DNA haplogroup and assessed its association with the composition of the gut microbiota. RESULTS: Staphylococcus was the most predominant bacterial genus observed in the skin; Escherichia/Shigella and Clostridium sensu stricto were highly abundant in the gut of cAD-affected dogs. In the gut microbiota, Fusobacteria and Megamonas were highly abundant in healthy dogs but significantly reduced in cAD-affected dogs. The abundance of these bacterial taxa was positively correlated with the effect of the treatment and state of the disease. Oclacitinib treatment on cAD-affected dogs shifted the composition of microbiota towards that in healthy dogs, and the latter brought it much closer to healthy microbiota, particularly in the gut. Additionally, even within the same dog breed, the mtDNA haplogroup varied, and there was an association between the mtDNA haplogroup and microbial composition in the gut and skin. CONCLUSIONS: Dysbiosis of both the skin and the gut was observed in cAD in Shiba Inu dogs. Our findings provide a basis for the potential treatment of cAD by manipulating the gut microbiota as well as the skin microbiota. Video Abstract.


Subject(s)
Dermatitis, Atopic , Microbiota , Dogs , Humans , Animals , Dermatitis, Atopic/veterinary , Dermatitis, Atopic/microbiology , Dysbiosis , Quality of Life , Bacteria , DNA, Mitochondrial
3.
J Pathol ; 261(2): 184-197, 2023 10.
Article in English | MEDLINE | ID: mdl-37565309

ABSTRACT

Psoriasis is a chronic inflammatory skin condition. Repeated epicutaneous application of Aldara® (imiquimod) cream results in psoriasiform dermatitis in mice. The Aldara®-induced psoriasiform dermatitis (AIPD) mouse model has been used to examine the pathogenesis of psoriasis. Here, we used a forward genetics approach in which we compared AIPD that developed in 13 different inbred mouse strains to identify genes and pathways that modulated disease severity. Among our primary results, we found that the severity of AIPD differed substantially between different strains of inbred mice and that these variations were associated with polymorphisms in Itga11. The Itga11 gene encodes the integrin α11 subunit that heterodimerizes with the integrin ß1 subunit to form integrin α11ß1. Less information is available about the function of ITGA11 in skin inflammation; however, a role in the regulation of cutaneous wound healing, specifically the development of dermal fibrosis, has been described. Experiments performed with Itga11 gene-deleted (Itga11-/- ) mice revealed that the integrin α11 subunit contributes substantially to the clinical phenotype as well as the histopathological and molecular findings associated with skin inflammation characteristic of AIPD. Although the skin transcriptomes of Itga11-/- and WT mice do not differ from one another under physiological conditions, distinct transcriptomes emerge in these strains in response to the induction of AIPD. Most of the differentially expressed genes contributed to extracellular matrix organization, immune system, and metabolism of lipids pathways. Consistent with these findings, we detected a reduced number of fibroblasts and inflammatory cells, including macrophages, T cells, and tissue-resident memory T cells in skin samples from Itga11-/- mice in response to AIPD induction. Collectively, our results reveal that Itga11 plays a critical role in promoting skin inflammation in AIPD and thus might be targeted for the development of novel therapeutics for psoriasiform skin conditions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Dermatitis , Integrin alpha Chains , Psoriasis , Animals , Mice , Dermatitis/genetics , Dermatitis/pathology , Disease Models, Animal , Imiquimod/adverse effects , Inflammation/pathology , Integrin alpha Chains/genetics , Integrin alpha Chains/metabolism , Psoriasis/chemically induced , Psoriasis/genetics , Skin/pathology
4.
Biomedicines ; 10(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35885021

ABSTRACT

Subepithelial fibrosis is a characteristic hallmark of airway remodeling in asthma. Current asthma medications have limited efficacy in treating fibrosis, particularly in patients with severe asthma, necessitating a deeper understanding of the fibrotic mechanisms. The NF-κB pathway is key to airway inflammation in asthma, as it regulates the activity of multiple pro-inflammatory mediators that contribute to airway pathology. Bcl10 is a well-known upstream mediator of the NF-κB pathway that has been linked to fibrosis in other disease models. Therefore, we investigated Bcl10-mediated NF-κB activation as a potential pathway regulating fibrotic signaling in severe asthmatic fibroblasts. We demonstrate here the elevated protein expression of Bcl10 in bronchial fibroblasts and bronchial biopsies from severe asthmatic patients when compared to non-asthmatic individuals. Lipopolysaccharide (LPS) induced the increased expression of the pro-fibrotic cytokines IL-6, IL-8 and TGF-ß1 in bronchial fibroblasts, and this induction was associated with the activation of Bcl10. Inhibition of the Bcl10-mediated NF-κB pathway using an IRAK1/4 selective inhibitor abrogated the pro-fibrotic signaling induced by LPS. Thus, our study indicates that Bcl10-mediated NF-κB activation signals increased pro-fibrotic cytokine expression in severe asthmatic airways. This reveals the therapeutic potential of targeting Bcl10 signaling in ameliorating inflammation and fibrosis, particularly in severe asthmatic individuals.

5.
Elife ; 112022 07 19.
Article in English | MEDLINE | ID: mdl-35866635

ABSTRACT

Determining the forces that shape diversity in host-associated bacterial communities is critical to understanding the evolution and maintenance of metaorganisms. To gain deeper understanding of the role of host genetics in shaping gut microbial traits, we employed a powerful genetic mapping approach using inbred lines derived from the hybrid zone of two incipient house mouse species. Furthermore, we uniquely performed our analysis on microbial traits measured at the gut mucosal interface, which is in more direct contact with host cells and the immune system. Several mucosa-associated bacterial taxa have high heritability estimates, and interestingly, 16S rRNA transcript-based heritability estimates are positively correlated with cospeciation rate estimates. Genome-wide association mapping identifies 428 loci influencing 120 taxa, with narrow genomic intervals pinpointing promising candidate genes and pathways. Importantly, we identified an enrichment of candidate genes associated with several human diseases, including inflammatory bowel disease, and functional categories including innate immunity and G-protein-coupled receptors. These results highlight key features of the genetic architecture of mammalian host-microbe interactions and how they diverge as new species form.


The digestive system, particularly the large intestine, hosts many types of bacteria which together form the gut microbiome. The exact makeup of different bacterial species is specific to an individual, but microbiomes are often more similar between related individuals, and more generally, across related species. Whether this is because individuals share similar environments or similar genetic backgrounds remains unclear. These two factors can be disentangled by breeding different animal lineages ­ which have different genetic backgrounds while belonging to the same species ­ and then raising the progeny in the same environment. To investigate this question, Doms et al. studied the genes and microbiomes of mice resulting from breeding strains from multiple locations in a natural hybrid zone between different subspecies. The experiments showed that 428 genetic regions affected the makeup of the microbiome, many of which were known to be associated with human diseases. Further analysis revealed 79 genes that were particularly interesting, as they were involved in recognition and communication with bacteria. These results show how the influence of the host genome on microbiome composition becomes more specialized as animals evolve. Overall, the work by Doms et al. helps to pinpoint the genes that impact the microbiome; this knowledge could be helpful to examine how these interactions contribute to the emergence of conditions such as diabetes or inflammatory bowel disease, which are linked to perturbations in gut bacteria.


Subject(s)
Gastrointestinal Microbiome , Host Microbial Interactions , Animals , Bacteria/genetics , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Host Microbial Interactions/genetics , Mice , Mucous Membrane , RNA, Ribosomal, 16S/genetics
6.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162979

ABSTRACT

We recently reported on two mouse strains carrying different single nucleotide variations in the mitochondrial complex I gene, i.e., B6-mtBPL mice carrying m.11902T>C and B6-mtALR carrying m.4738C>A. B6-mtBPL mice exhibited a longer lifespan and a lower metabolic disease susceptibility despite mild mitochondrial functional differences in steady-state. As natural polymorphisms in the mitochondrial DNA (mtDNA) are known to be associated with distinct patterns of gut microbial composition, we further investigated the gut microbiota composition in these mice strains. In line with mouse phenotypes, we found a significantly lower abundance of Proteobacteria, which is positively associated with pathological conditions, in B6-mtBPL compared to B6-mtALR mice. A prediction of functional profile of significantly differential bacterial genera between these strains revealed an involvement of glucose metabolism pathways. Whole transcriptome analysis of liver samples from B6-mtBPL and B6-mtALR mice confirmed these findings. Thus, both host gene expression and gut microbial changes caused by the mtDNA variant differences may contribute to the ageing and metabolic phenotypes observed in these mice strains. Since gut microbiota are easier to modulate, compared with mtDNA variants, identification of such mtDNA variants, specific gut bacterial species and bacterial metabolites may be a potential intervention to modulate common diseases, which are differentially susceptible to individuals with different mtDNA variants.


Subject(s)
Gastrointestinal Microbiome , Metabolic Diseases , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Gastrointestinal Microbiome/genetics , Longevity , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Mice , Mitochondria/metabolism
7.
Cancers (Basel) ; 13(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200264

ABSTRACT

(1) Background: Today, the discovery of novel anticancer agents with multitarget effects and high safety margins represents a high challenge. Drug discovery efforts indicated that benzopyrane scaffolds possess a wide range of pharmacological activities. This spurs on building a skeletally diverse library of benzopyranes to identify an anticancer lead drug candidate. Here, we aim to characterize the anticancer effect of a novel benzopyrane derivative, aiming to develop a promising clinical anticancer candidate. (2) Methods: The anticancer effect of SIMR1281 against a panel of cancer cell lines was tested. In vitro assays were performed to determine the effect of SIMR1281 on GSHR, TrxR, mitochondrial metabolism, DNA damage, cell cycle progression, and the induction of apoptosis. Additionally, SIMR1281 was evaluated in vivo for its safety and in a xenograft mice model. (3) Results: SIMR1281 strongly inhibits GSHR while it moderately inhibits TrxR and modulates the mitochondrial metabolism. SIMR1281 inhibits the cell proliferation of various cancers. The antiproliferative activity of SIMR1281 was mediated through the induction of DNA damage, perturbations in the cell cycle, and the inactivation of Ras/ERK and PI3K/Akt pathways. Furthermore, SIMR1281 induced apoptosis and attenuated cell survival machinery. In addition, SIMR1281 reduced the tumor volume in a xenograft model while maintaining a high in vivo safety profile at a high dose. (4) Conclusions: Our findings demonstrate the anticancer multitarget effect of SIMR1281, including the dual inhibition of glutathione and thioredoxin reductases. These findings support the development of SIMR1281 in preclinical and clinical settings, as it represents a potential lead compound for the treatment of cancer.

8.
Pharmacol Res ; 170: 105724, 2021 08.
Article in English | MEDLINE | ID: mdl-34116209

ABSTRACT

Telmisartan prevents diet-induced obesity (DIO) in rodents. Given that the precise underlying mechanism is not known, we examined whether a gut-related mechanism might be involved. Sprague-Dawley rats received cafeteria diet (CD) for 3 months to develop DIO and were administered either telmisartan (8 mg/kgbw) or vehicle. In addition, pair-fed (PF) rats received CD adjusted to TEL and control rats (CON) only received chow. Stool samples were analysed by 16 S rRNA gene amplicon sequencing. CD-fed rats became obese while TEL, PF and CON rats remained lean. Alpha diversity analyses indicated that bacterial diversity was similar before the study but changed over time. Beta diversity revealed a time-, CD- and telmisartan-dependent effect. The Firmicutes/Bacteroidetes ratio and the abundance of Blautia, Allobaculum and Parasutterella were higher in DIO and PF than in CON, but not in TEL. Enterotype (ET)-like clustering analyses, Kleinberg's hub network scoring and random forest analyses also indicated that telmisartan induced a specific signature of gut microbiota. In response to stool transfer from telmisartan-pre-treated donor to high-fat fed acceptor mice, body weight gain was slightly attenuated. We attribute the anti-obesity action of telmisartan treatment to diet-independent alterations in gut microbiota as the microbiota from telmisartan-treated, CD-fed rats clearly differed from those of DIO and PF rats. ET-like clustering network, random forest classification and the higher stability in bacterial co-occurrence network analyses indicate that there is more than one indicator species for telmisartan's specific signature, which is further strengthened by the fact that we cannot identify a single indicator species.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Anti-Obesity Agents/pharmacology , Bacteria/drug effects , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Telmisartan/pharmacology , Weight Gain/drug effects , Animals , Bacteria/growth & development , Diet/adverse effects , Disease Models, Animal , Dysbiosis , Fecal Microbiota Transplantation , Feces/microbiology , Mice , Obesity/etiology , Obesity/microbiology , Obesity/physiopathology , Rats , Rats, Sprague-Dawley
9.
J Invest Dermatol ; 141(11): 2587-2595.e2, 2021 11.
Article in English | MEDLINE | ID: mdl-34033839

ABSTRACT

Epidermolysis bullosa acquisita and mucous membrane pemphigoid are autoimmune blistering diseases characterized by mucocutaneous blisters elicited by an autoantibody-mediated immune response against specific proteins of the epidermal basement membrane. The antibiotic dapsone is frequently used to treat both diseases, but its therapeutic effectiveness is uncertain, and its mode of action in these diseases is largely unknown. We evaluated the effect of dapsone in antibody transfer mouse models of epidermolysis bullosa acquisita and mucous membrane pemphigoid, which do not allow the drawing of conclusions on clinical treatment regimens but can be instrumental to partially uncover the mode(s) of action of dapsone in these diseases. Dapsone significantly mitigated inflammation in both models, reducing the recruitment of neutrophils into the skin and disrupting their release of leukotriene B4 (LTB4) and ROS in response to immune complexes. LTB4 has been implicated in numerous diseases, but effective LTB4 inhibitors for clinical use are not available. Our findings indicate that the mode of action of dapsone in these models may be based on the inhibition of LTB4 and ROS release from neutrophils. Moreover, they encourage testing the use of dapsone as an effective, albeit nonspecific, inhibitor of LTB4 biosynthesis in other LTB4-driven diseases.


Subject(s)
Dapsone/therapeutic use , Pemphigoid, Bullous/drug therapy , Animals , Cell Adhesion Molecules/immunology , Dapsone/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Leukotriene B4/biosynthesis , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred C57BL , Neutrophils/drug effects , Neutrophils/immunology , Pemphigoid, Bullous/immunology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Kalinin
10.
Orphanet J Rare Dis ; 16(1): 228, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34011352

ABSTRACT

Bullous pemphigoid (BP) is the most common autoimmune skin blistering disease characterized by autoimmunity against the hemidesmosomal proteins BP180, type XVII collagen, and BP230. To elucidate the genetic basis of susceptibility to BP, we performed the first genome-wide association study (GWAS) in Germans. This GWAS was combined with HLA locus targeted sequencing in an additional independent BP cohort. The strongest association with BP in Germans tested in this study was observed in the two HLA loci, HLA-DQA1*05:05 and HLA-DRB1*07:01. Further studies with increased sample sizes and complex studies integrating multiple pathogenic drivers will be conducted.


Subject(s)
HLA-DQ alpha-Chains/genetics , HLA-DRB1 Chains/genetics , Pemphigoid, Bullous , Alleles , Autoantibodies , Autoantigens , Genome-Wide Association Study , Germany , Humans , Non-Fibrillar Collagens , Pemphigoid, Bullous/genetics
11.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498298

ABSTRACT

Several genetic variants in the mitochondrial genome (mtDNA), including ancient polymorphisms, are associated with chronic inflammatory conditions, but investigating the functional consequences of such mtDNA polymorphisms in humans is challenging due to the influence of many other polymorphisms in both mtDNA and the nuclear genome (nDNA). Here, using the conplastic mouse strain B6-mtFVB, we show that in mice, a maternally inherited natural mutation (m.7778G > T) in the mitochondrially encoded gene ATP synthase 8 (mt-Atp8) of complex V impacts on the cellular metabolic profile and effector functions of CD4+ T cells and induces mild changes in oxidative phosphorylation (OXPHOS) complex activities. These changes culminated in significantly lower disease susceptibility in two models of inflammatory skin disease. Our findings provide experimental evidence that a natural variation in mtDNA influences chronic inflammatory conditions through alterations in cellular metabolism and the systemic metabolic profile without causing major dysfunction in the OXPHOS system.


Subject(s)
DNA, Mitochondrial/genetics , Epidermolysis Bullosa Acquisita/genetics , Lymphocytes/metabolism , Polymorphism, Single Nucleotide , Animals , Cells, Cultured , Cytokines/metabolism , Epidermolysis Bullosa Acquisita/metabolism , Mice , Mice, Inbred C57BL , Mitochondria, Liver/genetics , Mitochondria, Liver/metabolism , Mitochondrial Proton-Translocating ATPases/genetics
12.
J Invest Dermatol ; 141(2): 285-294, 2021 02.
Article in English | MEDLINE | ID: mdl-32653301

ABSTRACT

The major histocompatibility complex haplotype represents the most prevalent genetic risk factor for the development of autoimmune diseases. However, the mechanisms by which major histocompatibility complex-associated genetic susceptibility translates into autoimmune disease are not fully understood. Epidermolysis bullosa acquisita is an autoimmune skin-blistering disease driven by autoantibodies to type VII collagen. Here, we investigated autoantigen-specific plasma cells, CD4+ T cells, and IgG fraction crystallizable glycosylation in murine epidermolysis bullosa acquisita in congenic mouse strains with the disease-permitting H2s or disease-nonpermitting H2b major histocompatibility complex II haplotypes. Mice with an H2s haplotype showed increased numbers of autoreactive CD4+ T cells and elevated IL-21 and IFN-γ production, associated with a higher frequency of IgG autoantibodies with an agalactosylated, proinflammatory N-glycan moiety. Mechanistically, we show that the altered antibody glycosylation leads to increased ROS release from neutrophils, the main drivers of autoimmune inflammation in this model. These results indicate that major histocompatibility complex II-associated susceptibility to autoimmune diseases acuminates in a proinflammatory IgG fraction crystallizable N-glycosylation pattern and provide a mechanistic link to increased ROS release by neutrophils.


Subject(s)
Autoimmune Diseases/etiology , Haplotypes , Histocompatibility Antigens Class II/genetics , Immunoglobulin G/physiology , Skin Diseases/etiology , Animals , Autoantibodies/blood , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Cytokines/analysis , Glycosylation , Immunoglobulin G/blood , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Skin Diseases/genetics , Skin Diseases/immunology , T-Lymphocytes, Regulatory/immunology
13.
J Cell Mol Med ; 24(15): 8862-8870, 2020 08.
Article in English | MEDLINE | ID: mdl-32643288

ABSTRACT

The impact of environmental factors, such as diet, and the genetic basis of autoimmune pancreatitis (AIP) are largely unknown. Here, we used an experimental murine AIP model to identify the contribution of diet to AIP development, as well as to fine-map AIP-associated genes in outbred mice prone to develop the disease. For this purpose, we fed mice of an autoimmune-prone intercross line (AIL) three different diets (control, calorie-reduced and western diet) for 6 months, at which point the mice were genotyped and phenotyped for AIP. Overall, 269 out of 734 mice (36.6%) developed AIP with signs of parenchymal destruction, equally affecting mice of both sexes. AIP prevalence and severity were reduced by approximately 50% in mice held under caloric restriction compared to those fed control or western diet. We identified a quantitative trait locus (QTL) on chromosome 4 to be associated with AIP, which is located within a previously reported QTL. This association does not change when considering diet or sex as an additional variable for the mapping. Using whole-genome sequences of the AIL founder strains, we resolved this QTL to a single candidate gene, namely Map3k7. Expression of Map3k7 was largely restricted to islet cells as well as lymphocytes found in the exocrine pancreas of mice with AIP. Our studies suggest a major impact of diet on AIP. Furthermore, we identify Map3k7 as a novel susceptibility gene for experimental AIP. Both findings warrant clinical translation.


Subject(s)
Autoimmune Pancreatitis/etiology , Diet/adverse effects , Disease Susceptibility , Genetic Predisposition to Disease , Alleles , Animals , Autoimmune Pancreatitis/diagnosis , Autoimmune Pancreatitis/metabolism , Biomarkers , Chromosome Mapping , Disease Models, Animal , Female , Gene Expression , Gene-Environment Interaction , Genotype , Immunohistochemistry , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Male , Mice , Quantitative Trait Loci , Severity of Illness Index
14.
Nutrients ; 12(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316544

ABSTRACT

Non-caloric artificial sweeteners are frequently discussed as components of the "Western diet", negatively modulating intestinal homeostasis. Since the artificial sweetener saccharin is known to depict bacteriostatic and microbiome-modulating properties, we hypothesized oral saccharin intake to influence intestinal inflammation and aimed at delineating its effect on acute and chronic colitis activity in mice. In vitro, different bacterial strains were grown in the presence or absence of saccharin. Mice were supplemented with saccharin before or after induction of acute or chronic colitis using dextran sodium sulfate (DSS) and the extent of colitis was assessed. Ex vivo, intestinal inflammation, fecal bacterial load and composition were studied by immunohistochemistry analyses, quantitative PCR, 16 S RNA PCR or next generation sequencing in samples collected from analyzed mice. In vitro, saccharin inhibited bacterial growth in a species-dependent manner. In vivo, oral saccharin intake reduced fecal bacterial load and altered microbiome composition, while the intestinal barrier was not obviously affected. Of note, DSS-induced colitis activity was significantly improved in mice after therapeutic or prophylactic treatment with saccharin. Together, this study demonstrates that oral saccharin intake decreases intestinal bacteria count and hence encompasses the capacity to reduce acute and chronic colitis activity in mice.


Subject(s)
Colitis/drug therapy , Colitis/microbiology , Dietary Supplements , Intestinal Mucosa/microbiology , Saccharin/administration & dosage , Saccharin/pharmacology , Acute Disease , Administration, Oral , Animals , Bacillus cereus/drug effects , Chronic Disease , Colitis/chemically induced , Dextran Sulfate , Disease Models, Animal , Drug Resistance, Bacterial , Inflammation , Klebsiella pneumoniae/drug effects , Male , Mice, Inbred C57BL , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
15.
Front Immunol ; 10: 2200, 2019.
Article in English | MEDLINE | ID: mdl-31824475

ABSTRACT

Bullous pemphigoid (BP) is the most prevalent autoimmune skin blistering disease and is characterized by the generation of autoantibodies against the hemidesmosomal proteins BP180 (type XVII collagen) and BP230. Most intriguingly, BP is distinct from other autoimmune diseases because it predominantly affects elderly individuals above the age of 75 years, raising the question why autoantibodies and the clinical lesions of BP emerges mostly in this later stage of life, even in individuals harboring known putative BP-associated germline gene variants. The mitochondrial genome (mtDNA) is a potential candidate to provide additional insights into the BP etiology; however, the mtDNA has not been extensively explored to date. Therefore, we sequenced the whole mtDNA of German BP patients (n = 180) and age- and sex-matched healthy controls (n = 188) using next generation sequencing (NGS) technology, followed by the replication study using Sanger sequencing of an additional independent BP (n = 89) and control cohort (n = 104). While the BP and control groups showed comparable mitochondrial haplogroup distributions, the haplogroup T exhibited a tendency of higher frequency in BP patients suffering from neurodegenerative diseases (ND) compared to BP patients without ND (50%; 3 in 6 BP with haplogroup T). A total of four single nucleotide polymorphisms (SNPs) in the mtDNA, namely, m.16263T>C, m.16051A>G, and m.16162A>G in the D-loop region of the mtDNA, and m.11914G>A in the mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 4 gene (MT-ND4), were found to be significantly associated with BP based on the meta-analysis of our NGS data and the Sanger sequencing data (p = 0.0017, p = 0.0129, p = 0.0076, and p = 0.0132, respectively, Peto's test). More specifically, the three SNPs in the D-loop region were negatively, and the SNP in the MT-ND4 gene was positively associated with BP. Our study is the first to interrogate the whole mtDNA in BP patients and controls and to implicate multiple novel mtDNA variants in disease susceptibility. Studies using larger cohorts and more diverse populations are warranted to explore the functional consequences of the mtDNA variants identified in this study on immune and skin cells to understand their contributions to BP pathology.


Subject(s)
DNA, Mitochondrial , Genome, Mitochondrial/immunology , NADH Dehydrogenase , Pemphigoid, Bullous , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Autoantibodies/immunology , Autoantigens/genetics , Autoantigens/immunology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/immunology , Dystonin/genetics , Dystonin/immunology , Female , High-Throughput Nucleotide Sequencing , Humans , Male , NADH Dehydrogenase/genetics , NADH Dehydrogenase/immunology , Non-Fibrillar Collagens/genetics , Non-Fibrillar Collagens/immunology , Pemphigoid, Bullous/genetics , Pemphigoid, Bullous/immunology , Collagen Type XVII
16.
Nat Commun ; 10(1): 4097, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506438

ABSTRACT

Phenotypic variation of quantitative traits is orchestrated by a complex interplay between the environment (e.g. diet) and genetics. However, the impact of gene-environment interactions on phenotypic traits mostly remains elusive. To address this, we feed 1154 mice of an autoimmunity-prone intercross line (AIL) three different diets. We find that diet substantially contributes to the variability of complex traits and unmasks additional genetic susceptibility quantitative trait loci (QTL). By performing whole-genome sequencing of the AIL founder strains, we resolve these QTLs to few or single candidate genes. To address whether diet can also modulate genetic predisposition towards a given trait, we set NZM2410/J mice on similar dietary regimens as AIL mice. Our data suggest that diet modifies genetic susceptibility to lupus and shifts intestinal bacterial and fungal community composition, which precedes clinical disease manifestation. Collectively, our study underlines the importance of including environmental factors in genetic association studies.


Subject(s)
Crosses, Genetic , Diet , Genes , Genetic Association Studies , Quantitative Trait, Heritable , Animals , Animals, Outbred Strains , Antibodies, Antinuclear/genetics , Bacteria/growth & development , Biodiversity , Female , Fungi/growth & development , Genetic Predisposition to Disease , Lupus Nephritis/genetics , Lupus Nephritis/immunology , Male , Mice , Microbiota , Physical Chromosome Mapping , Quantitative Trait Loci/genetics , Spleen/metabolism , Transcriptome/genetics , Whole Genome Sequencing
17.
Genes (Basel) ; 10(7)2019 07 13.
Article in English | MEDLINE | ID: mdl-31337008

ABSTRACT

Mitochondrial complex I-the largest enzyme complex of the mitochondrial oxidative phosphorylation machinery-has been proposed to contribute to a variety of age-related pathological alterations as well as longevity. The enzyme complex-consisting proteins are encoded by both nuclear (nDNA) and mitochondrial DNA (mtDNA). While some association studies of mtDNA encoded complex I genes and lifespan in humans have been reported, experimental evidence and the functional consequence of such variants is limited to studies using invertebrate models. Here, we present experimental evidence that a homoplasmic mutation in the mitochondrially encoded complex I gene mt-Nd2 modulates lifespan by altering cellular tryptophan levels and, consequently, ageing-related pathways in mice. A conplastic mouse strain carrying a mutation at m.4738C > A in mt-Nd2 lived slightly, but significantly, shorter than the controls did. The same mutation led to a higher susceptibility to glucose intolerance induced by high-fat diet feeding. These phenotypes were not observed in mice carrying a mutation in another mtDNA encoded complex I gene, mt-Nd5, suggesting the functional relevance of particular mutations in complex I to ageing and age-related diseases.


Subject(s)
Longevity/genetics , Maternal Inheritance , Mitochondrial Proteins/genetics , NADH Dehydrogenase/genetics , Animals , DNA, Mitochondrial , Diet, High-Fat , Female , Glucose Intolerance , Male , Metabolic Networks and Pathways/genetics , Mice, Inbred C57BL , Mutation , Stress, Physiological , Tryptophan/metabolism
18.
Int J Mol Sci ; 20(9)2019 May 13.
Article in English | MEDLINE | ID: mdl-31085998

ABSTRACT

In this study, we provide experimental evidence that a maternally inherited polymorphism in the mitochondrial cytochrome b gene (mt-Cytb; m.15124A>G, Ile-Val) in mitochondrial complex III resulted in middle-aged obesity and higher susceptibility to diet-induced obesity, as well as age-related inflammatory disease, e.g., ulcerative dermatitis, in mice. As a consequence of the gene variation, we observed alterations in body composition, metabolism and mitochondrial functions, i.e., increased mitochondrial oxygen consumption rate and higher levels of reactive oxygen species, as well as in the commensal bacterial composition in the gut, with higher abundance of Proteobacteria in mice carrying the variant. These observations are in line with the previously described links of the mitochondrial complex III gene with obesity and metabolic diseases in humans. Given that these functional changes by the G variant at m.15124 in the mt-Cytb are already present in young mice that were kept under normal condition, it is plausible that the m.15124A>G variant is a disease susceptibility modifier to the diseases induced by additional stressors, i.e., dietary and/or aging stress, and that the variant results in the higher incidence of clinical diseases presentation in C57BL/6J-mt129S1/SvlmJ than C57BL/6J mice. Thus, mtDNA variants could be potential biomarkers to evaluate the healthspan.


Subject(s)
DNA, Mitochondrial/genetics , Genes, Mitochondrial/genetics , Animals , Bacteroidetes/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mitochondrial Membranes/metabolism , Mutation/genetics , Oxidative Stress/genetics , Oxidative Stress/physiology , Polymorphism, Single Nucleotide/genetics , Reactive Oxygen Species/metabolism
19.
Exp Dermatol ; 28(5): 623-627, 2019 05.
Article in English | MEDLINE | ID: mdl-30921485

ABSTRACT

Psoriasis is a chronic inflammatory disorder of the skin, with genetic factors reportedly involved in the disease pathogenesis. Numerous studies reported psoriasis candidate genes. However, these tend to involve mostly in the European and Asian populations. Here, we report the first genome-wide association study (GWAS) in an Egyptian population, identifying susceptibility variants for psoriasis using a two-stage case-control design. In the first discovery stage, we carried out a genome-wide association analysis using the Infinium® Global Screening Array-24 v1.0, on 253 cases and 449 control samples of Egyptian descent. In the second replication stage, 26 single-nucleotide polymorphisms (SNPs) were selected for replication in additional 321 cases and 253 controls. In concordance with the findings from previous studies on other populations, we found a genome-wide significant association between the MHC locus and the disease at rs12199223 (Pcomb  = 6.57 × 10-18 ) and rs1265181 (Pcomb  = 1.03 × 10-10 ). Additionally, we identified a novel significant association with the disease at locus, 4q32.1 (rs12650590, Pcomb  = 4.49 × 10-08 ) in the vicinity of gene GUCY1A3, and multiple suggestive associations, for example rs10832027 (Pcomb  = 7.28 × 10-06 ) and rs3770019 (Pcomb  = 1.02 × 10-05 ). This proposes the existence of important interethnic genetic differences in psoriasis susceptibility. Further studies are necessary to elucidate the downstream pathways of the new candidate loci.


Subject(s)
Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Psoriasis/genetics , Case-Control Studies , Egypt/epidemiology , Female , Genome, Human , Genome-Wide Association Study , Genotype , Humans , Inflammation , Major Histocompatibility Complex , Male , Oligonucleotide Array Sequence Analysis , Risk
20.
J Autoimmun ; 96: 104-112, 2019 01.
Article in English | MEDLINE | ID: mdl-30219389

ABSTRACT

IL-17A has been identified as key regulatory molecule in several autoimmune and chronic inflammatory diseases followed by the successful use of anti-IL-17 therapy, e.g. in ankylosing spondylitis and psoriasis. Bullous pemphigoid (BP) is the most frequent autoimmune blistering disease with a high need for more specific, effective and safe treatment options. The aim of this study was to clarify the pathophysiological importance of IL-17A in BP. We found elevated numbers of IL-17A+ CD4+ lymphocytes in the peripheral blood of BP patients and identified CD3+ cells as major source of IL-17A in early BP skin lesions. IL17A and related genes were upregulated in BP skin and exome sequencing of 51 BP patients revealed mutations in twelve IL-17-related genes in 18 patients. We have subsequently found several lines of evidence suggesting a significant role of IL-17A in the BP pathogenesis: (i) IL-17A activated human neutrophils in vitro, (ii) inhibition of dermal-epidermal separation in cryosections of human skin incubated with anti-BP180 IgG and subsequently with anti-IL-17A IgG-treated leukocytes, (iii) close correlation of serum IL-17A levels and diseases activity in a mouse model of BP, (iv) IL17A-deficient mice were protected against autoantibody-induced BP, and (v) pharmacological inhibition of lL-17A reduced the induction of BP in mice. Our data give evidence for a pivotal role of IL-17A in the pathophysiology of BP and advocate IL-17A inhibition as potential novel treatment for this disease.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interleukin-17/metabolism , Neutrophils/immunology , Pemphigoid, Bullous/immunology , Skin/metabolism , Animals , Autoantibodies/immunology , Cells, Cultured , Disease Models, Animal , Humans , Interleukin-17/genetics , Mice , Mice, Knockout , Mutation/genetics , Neutrophil Activation , Skin/pathology , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...