Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm Pract ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965914

ABSTRACT

OBJECTIVES: This study aimed to investigate and provide insight into the prevalence and patterns of off-label drug use in the pediatric population from the perspective of community pharmacists, addressing the existing data gap in a developing setting. METHODS: A questionnaire-based cross-sectional study was conducted on Albanian community pharmacists in June 2021. The online administered survey explored the participants' demographic details, perceptions, and experiences with off-label prescriptions in pediatric patients. The statistical analysis conducted on the survey data comprised the construction of frequency tables and the application of the chi-square test for independence. KEY FINDINGS: Three hundred and thirty-six community pharmacists nationwide completed the survey, out of which 186 (55.3%) were practiced in Tirana, the capital of Albania. Over 80% of surveyed pharmacists (n = 275) had encountered off-label drug prescriptions in pediatric patients, yet only 40% of participants reported dispensing medicines for off-label use. Community pharmacists reported that general pediatricians tended to prescribe off-label medications more frequently than pediatric subspecialists or general practitioners. It was found that off-label prescriptions were more frequently observed among children aged between 2 and 11 years. Antibiotics were the most reported medicines for off-label use in this study mentioned in almost all off-label categories. CONCLUSIONS: Prescribing medicines for unapproved uses for the treatment of pediatric patients is present in community settings in Albania. This indicates the need for further data collection and analysis to understand off-label practices in our country's pediatric population comprehensively.

2.
Front Microbiol ; 14: 1250806, 2023.
Article in English | MEDLINE | ID: mdl-38075858

ABSTRACT

The human microbiome has become an area of intense research due to its potential impact on human health. However, the analysis and interpretation of this data have proven to be challenging due to its complexity and high dimensionality. Machine learning (ML) algorithms can process vast amounts of data to uncover informative patterns and relationships within the data, even with limited prior knowledge. Therefore, there has been a rapid growth in the development of software specifically designed for the analysis and interpretation of microbiome data using ML techniques. These software incorporate a wide range of ML algorithms for clustering, classification, regression, or feature selection, to identify microbial patterns and relationships within the data and generate predictive models. This rapid development with a constant need for new developments and integration of new features require efforts into compile, catalog and classify these tools to create infrastructures and services with easy, transparent, and trustable standards. Here we review the state-of-the-art for ML tools applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on ML based software and framework resources currently available for the analysis of microbiome data in humans. The aim is to support microbiologists and biomedical scientists to go deeper into specialized resources that integrate ML techniques and facilitate future benchmarking to create standards for the analysis of microbiome data. The software resources are organized based on the type of analysis they were developed for and the ML techniques they implement. A description of each software with examples of usage is provided including comments about pitfalls and lacks in the usage of software based on ML methods in relation to microbiome data that need to be considered by developers and users. This review represents an extensive compilation to date, offering valuable insights and guidance for researchers interested in leveraging ML approaches for microbiome analysis.

3.
Front Microbiol ; 14: 1250909, 2023.
Article in English | MEDLINE | ID: mdl-37869650

ABSTRACT

Although metagenomic sequencing is now the preferred technique to study microbiome-host interactions, analyzing and interpreting microbiome sequencing data presents challenges primarily attributed to the statistical specificities of the data (e.g., sparse, over-dispersed, compositional, inter-variable dependency). This mini review explores preprocessing and transformation methods applied in recent human microbiome studies to address microbiome data analysis challenges. Our results indicate a limited adoption of transformation methods targeting the statistical characteristics of microbiome sequencing data. Instead, there is a prevalent usage of relative and normalization-based transformations that do not specifically account for the specific attributes of microbiome data. The information on preprocessing and transformations applied to the data before analysis was incomplete or missing in many publications, leading to reproducibility concerns, comparability issues, and questionable results. We hope this mini review will provide researchers and newcomers to the field of human microbiome research with an up-to-date point of reference for various data transformation tools and assist them in choosing the most suitable transformation method based on their research questions, objectives, and data characteristics.

4.
Front Microbiol ; 14: 1261889, 2023.
Article in English | MEDLINE | ID: mdl-37808286

ABSTRACT

Microbiome data predictive analysis within a machine learning (ML) workflow presents numerous domain-specific challenges involving preprocessing, feature selection, predictive modeling, performance estimation, model interpretation, and the extraction of biological information from the results. To assist decision-making, we offer a set of recommendations on algorithm selection, pipeline creation and evaluation, stemming from the COST Action ML4Microbiome. We compared the suggested approaches on a multi-cohort shotgun metagenomics dataset of colorectal cancer patients, focusing on their performance in disease diagnosis and biomarker discovery. It is demonstrated that the use of compositional transformations and filtering methods as part of data preprocessing does not always improve the predictive performance of a model. In contrast, the multivariate feature selection, such as the Statistically Equivalent Signatures algorithm, was effective in reducing the classification error. When validated on a separate test dataset, this algorithm in combination with random forest modeling, provided the most accurate performance estimates. Lastly, we showed how linear modeling by logistic regression coupled with visualization techniques such as Individual Conditional Expectation (ICE) plots can yield interpretable results and offer biological insights. These findings are significant for clinicians and non-experts alike in translational applications.

5.
Front Microbiol ; 14: 1257002, 2023.
Article in English | MEDLINE | ID: mdl-37808321

ABSTRACT

The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish "gold standard" protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory 'omics' features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices.

SELECTION OF CITATIONS
SEARCH DETAIL
...