Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 10(10): e15294, 2022 05.
Article in English | MEDLINE | ID: mdl-35586958

ABSTRACT

Blood flow restriction (BFR) during low-intensity exercise has been known to be a potent procedure to alter metabolic and oxygen environments in working muscles. Moreover, the use of BFR during inter-set rest periods of repeated sprint exercise has been recently suggested to be a potent procedure for improving training adaptations. The present study was designed to determine the effect of repeated sprint exercise with post-exercise BFR (BFR during rest periods between sprints) on muscle oxygenation in working muscles. Eleven healthy males performed two different conditions on different days: either repeated sprint exercise with BFR during rest periods between sets (BFR condition) or without BFR (CON condition). A repeated sprint exercise consisted of three sets of 3 × 6-s maximal sprints (pedaling) with 24s rest periods between sprints and 5 min rest periods between sets. In BFR condition, two min of BFR (100-120 mmHg) for both legs was conducted between sets. During the exercise, power output and arterial oxygen saturation (SpO2 ) were evaluated. Muscle oxygenation for the vastus lateralis muscle, exercise-induced changes in muscle blood flow, and muscle oxygen consumption were measured. During BFR between sets, BFR condition presented significantly higher deoxygenated hemoglobin + myoglobin (p < 0.01) and lower tissue saturation index (p < 0.01) than those in CON condition. However, exercise-induced blood lactate elevation and reduction of blood pH did not differ significantly between the conditions. Furthermore, power output throughout nine sprints did not differ significantly between the two conditions. In conclusion, repeated sprint exercise with post-exercise BFR augmented muscle deoxygenation and local hypoxia, without interfering power output.


Subject(s)
Exercise , Oxygen Consumption , Exercise/physiology , Humans , Hypoxia , Male , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology , Quadriceps Muscle/metabolism , Regional Blood Flow
2.
Eur J Appl Physiol ; 121(10): 2869-2878, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34195866

ABSTRACT

PURPOSE: The purpose of the present study was to determine muscle blood flow and muscle oxygenation during repeated-sprint exercise under combined hot and hypoxic conditions. METHODS: In a single-blind, cross-over research design, 11 active males performed three sets of 5 × 6-s maximal sprints with 30-s active recovery on a cycling ergometer under control (CON; 23 °C, 50% rH, 20.9% FiO2), normobaric hypoxic (HYP; 23 °C, 50% rH, 14.5% FiO2), or hot + normobaric hypoxic (HH; 35 °C, 50% rH, 14.5% FiO2) conditions. The vastus lateralis muscle blood flow after each set and muscle oxygenation during each sprint were evaluated using near-infrared spectroscopy methods. RESULTS: Despite similar repeated-sprint performance among the three conditions (peak and mean power outputs, percent decrement score), HH was associated with significantly higher muscle blood flow compared with CON after the first set (CON: 0.61 ± 0.10 mL/min/100 g; HYP: 0.81 ± 0.13 mL/min/100 g; HH: 0.99 ± 0.16 mL/min/100 g; P < 0.05). The tissue saturation index was significantly lower in HYP than in CON during the latter phase of the exercise (P < 0.05), but it did not differ between HH and CON. CONCLUSION: These findings suggest that a combination of normobaric hypoxia and heat stress partially facilitated the exercise-induced increase in local blood flow, but it did not enhance tissue desaturation.


Subject(s)
Exercise/physiology , Hot Temperature , Hypoxia/physiopathology , Muscles/physiology , Oxygen Consumption/physiology , Regional Blood Flow/physiology , Athletic Performance/physiology , Bicycling/physiology , Humans , Quadriceps Muscle/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL